Issue |
E3S Web Conf.
Volume 351, 2022
10th International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES’2022)
|
|
---|---|---|
Article Number | 01030 | |
Number of page(s) | 4 | |
DOI | https://doi.org/10.1051/e3sconf/202235101030 | |
Published online | 24 May 2022 |
Voltage control using fuzzy logic for radial distribution network with high penetration of photovoltaic generators
Laboratory of Sciences and advanced Technologies (LSAT), FPL, Larache, Morocco
* Corresponding author: maataoui.yassir@gmail.com
Voltage control scheme to enhance the stability for current distribution networks connecting with distributed generation (DG). The increasing demand of energy in recent years transformed traditional distribution grids, which have unidirectional power flow to Active Distribution Networks (ADN), including significant penetration of renewable distributed generators (DGs), such as photovoltaic (PV) modules where the power flow became bidirectional due to the high excess DGs active power that reverses to the power grid. Therefore, this ADN comes with a significant challenge, which is voltage regulation problem. To interconnect PV Generators into distribution systems a robust control approach needs to be adopted, there are different Voltage control scheme can be carried out in variety of methods, such as control by using On Load Tap changers (OLTC), using PV inverters reactive power injection/absorption, real power curtailment process, storage batteries and more. This article proposed a reactive power compensation by PV inverters based on fuzzy logic for voltage control along with the feeders. The control approach was tested and simulated, and it was observed that it can guarantee of maintaining the voltage profile of the distribution network within acceptable range. The MATLAB and Simulink platforms are used to model the system.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.