Issue |
E3S Web of Conf.
Volume 396, 2023
The 11th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC2023)
|
|
---|---|---|
Article Number | 01018 | |
Number of page(s) | 8 | |
Section | Indoor Environmental Quality (IEQ), Human Health, Comfort and Productivity | |
DOI | https://doi.org/10.1051/e3sconf/202339601018 | |
Published online | 16 June 2023 |
Thermal resilience to overheating assessment in a Belgian educational building with passive cooling strategies during heatwaves and power outages
1 Building Physics and Sustainable Buildings, Department of Civil Engineering, KU Leuven, Gebroeders De Smetstraat 1, 9000 Gent, Belgium
2 Department of Architecture and Urban Planning, Ghent University, Jozef Plateaustraat 22, 9000 Gent, Belgium
* Corresponding author: abantika.sengupta@kuleuven.be
Airtight and highly insulated educational buildings are subjected to overheating risks, even in moderate climates, due to unforeseeable events like frequent heatwaves (HWs) and power outages (POs) leading to heat-stress and negative impact on the health conditions and cognitive performance of the students. The focus of this paper is to evaluate thermal resilience for two lecture rooms equipped with the low-energy cooling strategies natural night ventilation (NNV) and indirect evaporative cooling (IEC). To assess the thermal resilience to overheating, the lecture rooms were tested with and without passive cooling strategies for 3 Typical meteorological years (TMYs), 3 severe HWs and those 3 HWs + POs. Results evaluating the existing indicators unmet degree hours, indoor overheating degree (IOD), ambient warmness degree (AWD), and overheating escalation factor (αIOD) demonstrated that with passive cooling strategies the two test lecture rooms have good thermal resilience during TMY and HW periods (except long-term severe HW), with 18% higher unmet degree hours during HWs. Lecture room with heavier thermal mass demonstrated higher thermal resilience to overheating in long-term assessment. Furthermore the need to develop a holistic resilience indicator taking into account building and system parameters was also pointed out in this study.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.