Issue |
E3S Web of Conf.
Volume 396, 2023
The 11th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC2023)
|
|
---|---|---|
Article Number | 01089 | |
Number of page(s) | 6 | |
Section | Indoor Environmental Quality (IEQ), Human Health, Comfort and Productivity | |
DOI | https://doi.org/10.1051/e3sconf/202339601089 | |
Published online | 16 June 2023 |
Resiliency comparison of radiant cooling systems and all- air systems
1 Department of Architecture, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
2 International Centre for Indoor Environment and Energy – ICIEE, Department of Environmental and Resource Engineering, Technical University of Denmark, Nils Koppels Allé, Building 402, 2800 Kgs. Lyngby, Denmark
* Corresponding author: shindo@tanabe.arch.waseda.ac.jp
Radiant systems have been proven to be an energy-efficient and resource-effective heating and cooling solution for buildings. A key feature of a thermally active building system (TABS), one type of a radiant cooling system, is its ability to activate and control the thermal mass of the building structure. The advantage of this feature is the peak load shifting effect by the thermal mass, which leads to energy saving compared to a conventional system, e.g., an all-air system. This feature of the radiant cooling system could be particularly beneficial under a heat wave and power outage event. Dynamic building simulations were carried out to quantify the resilience of TABS to heat waves and power outages. An all-air system (i.e., airconditioning) was used as the reference cooling system. The simulations were carried out using EnergyPlus. Future weather files (typical meteorological years and years with heat waves) developed in IEA EBC Annex 80 were used for the simulations. In both HVAC systems. Simulation results for future weather data resulted in a decrease in heating demand and an increase in cooling demand.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.