Open Access
Issue
E3S Web of Conf.
Volume 396, 2023
The 11th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC2023)
Article Number 01023
Number of page(s) 8
Section Indoor Environmental Quality (IEQ), Human Health, Comfort and Productivity
DOI https://doi.org/10.1051/e3sconf/202339601023
Published online 16 June 2023
  1. Klepeis, N.E., et al., The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. Journal of Exposure Science & Environmental Epidemiology, 2001. 11(3): p. 231-252. [CrossRef] [Google Scholar]
  2. Leech, J.A., et al., It's about time: a comparison of Canadian and American time–activity patterns. Journal of Exposure Science & Environmental Epidemiology, 2002. 12(6): p. 427-432. [CrossRef] [Google Scholar]
  3. Du, W. and G. Wang, Indoor air pollution was nonnegligible during COVID-19 lockdown. Aerosol and Air Quality Research, 2020. 20(9): p. 1851-1855. [CrossRef] [Google Scholar]
  4. Briggs, D.J., et al., Time activity modelling of domestic exposures to radon. Journal of Environmental Management, 2003. 67(2): p. 107-120. [CrossRef] [PubMed] [Google Scholar]
  5. Cohen, A.J., et al., Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet, 2017. 389(10082): p. 1907-1918. [CrossRef] [Google Scholar]
  6. Chatzidiakou, L., D. Mumovic, and A.J. Summerfield, What do we know about indoor air quality in school classrooms? A critical review of the literature. Intelligent Buildings International, 2012. 4(4): p. 228-259. [CrossRef] [Google Scholar]
  7. Health Effects Institute, State of global air 2020, in Special report. 2020: Boston, MA. [Google Scholar]
  8. US Environmental Protection Agency. Indoor pollutants and sources. 2022; Available from: https://www.epa.gov/indoor-air-quality-iaq/indoor-pollutants-and-sources. [Google Scholar]
  9. Fisk, W., P. Wargocki, and X. Zhang, Do Indoor CO 2 Levels Directly Affect Perceived Air Quality, Health, or Work Performance? ASHRAE Journal, 2019. 61(9). [Google Scholar]
  10. UK Health Security Agency. Carbon monoxide: Toxicological overview. 2022; Available from: https://www.gov.uk/government/publications/carb on-monoxide-properties-incident-management-and-toxicology/carbon-monoxide-toxicologicaloverview#contents. [Google Scholar]
  11. WHO, Review of evidence on health aspects of air pollution: REVIHAAP project: technical report. 2021, World Health Organization. Regional Office for Europe. [Google Scholar]
  12. Vallero, D.A., Fundamentals of air pollution. 2014: Academic press. [Google Scholar]
  13. US Environmental Protection Agency. Introduction to indoor air quality. 2021; Available from: https://www.epa.gov/indoor-air-quality-iaq/introduction-indoor-air-quality#immediate. [Google Scholar]
  14. US Environmental Protection Agency. Volatile organic compounds' impact on indoor air quality. 2022; Available from: https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality#Steps. [Google Scholar]
  15. Kim, K.J., et al., Phytoremediation of volatile organic compounds by indoor plants: a review. Horticulture Environment and Biotechnology, 2018. 59(2): p. 143-157. [CrossRef] [Google Scholar]
  16. US Environmental Protection Agency. Indoor particulate matter. 2022; Available from: https://www.epa.gov/indoor-air-quality-iaq/indoor-particulate-matter#indoor_pm. [Google Scholar]
  17. Mendell, M.J., Non‐specific symptoms in office workers: a review and summary of the epidemiologic literature. Indoor Air, 1993. 3(4): p. 227-236. [CrossRef] [Google Scholar]
  18. Cummings, B.E. and M.S. Waring, Potted plants do not improve indoor air quality: a review and analysis of reported VOC removal efficiencies. Journal of exposure science & environmental epidemiology, 2020. 30(2): p. 253-261. [CrossRef] [PubMed] [Google Scholar]
  19. Kim, K.J., et al., Plant physiological mechanisms of air treatment, in From biofiltration to promising options in gaseous fluxes biotreatment. 2020, Elsevier. p. 219-244. [CrossRef] [Google Scholar]
  20. Han, Y., et al., Plant-based remediation of air pollution: A review. Journal of Environmental Management, 2022. 301: p. 113860. [CrossRef] [PubMed] [Google Scholar]
  21. Samudro, H. and S. Mangkoedihardjo, Indoor phytoremediation using decorative plants: An overview of application principles. Journal of Phytology, 2021. 13(6): p. 28-32. [CrossRef] [Google Scholar]
  22. Wolverton, B.C., A. Johnson, and K. Bounds, Interior landscape plants for indoor air pollution abatement. 1989. [Google Scholar]
  23. Gubb, C., et al., Interaction between plant species and substrate type in the removal of CO2 indoors. Air Quality Atmosphere and Health, 2019. 12(10): p. 1197-1206. [CrossRef] [Google Scholar]
  24. Jang, B.K., et al., Screening of Particulate Matter Reduction Ability of 21 Indigenous Korean Evergreen Species for Indoor Use. International Journal of Environmental Research and Public Health, 2021. 18(18). [PubMed] [Google Scholar]
  25. Ullah, H., C. Treesubsuntorn, and P. Thiravetyan, Enhancing mixed toluene and formaldehyde pollutant removal byZamioculcas zamiifoliacombined withSansevieria trifasciataand its CO(2)emission. Environmental Science and Pollution Research, 2021. 28(1): p. 538-546. [CrossRef] [PubMed] [Google Scholar]
  26. Oh, G.S., et al., Experimental study on variations of CO2 concentration in the presence of indoor plants and respiration of experimental animals. Horticulture Environment and Biotechnology, 2011. 52(3): p. 321-329. [CrossRef] [Google Scholar]
  27. Gong, Y., et al., Fundamentals of Ornamental Plants in Removing Benzene in Indoor Air. Atmosphere, 2019. 10(4). [Google Scholar]
  28. Lin, M.W., L.Y. Chen, and Y.K. Chuah, Investigation of A Potted Plant (Hedera helix) with Photo-Regulation to Remove Volatile Formaldehyde for Improving Indoor Air Quality. Aerosol and Air Quality Research, 2017. 17(10): p. 2543-2554. [CrossRef] [Google Scholar]
  29. Dela Cruz, M., et al., Removal of volatile gasoline compounds by indoor potted plants studied by pixel-based fingerprinting analysis. Chemosphere, 2019. 221: p. 226-234. [CrossRef] [PubMed] [Google Scholar]
  30. Wood, R.A., et al., The potted-plant microcosm substantially reduces indoor air VOC pollution: I. Office field-study. Water Air and Soil Pollution, 2006. 175(1-4): p. 163-180. [CrossRef] [Google Scholar]
  31. Pegas, P.N., et al., Could houseplants improve indoor air quality in schools? Journal of toxicology and environmental health, Part A, 2012. 75(22-23): p. 1371-1380. [CrossRef] [PubMed] [Google Scholar]
  32. Gawronska, H. and B. Bakera, Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L. plants. Air Quality Atmosphere and Health, 2015. 8(3): p. 265-272. [CrossRef] [PubMed] [Google Scholar]
  33. Han, K.T., Effects of visible greenness, quantity and distance of indoor plants on human perceptions and physical parameters. Indoor and Built Environment, 2020. [Google Scholar]
  34. Kim, H.-H., et al., House-plant placement for indoor air purification and health benefits on asthmatics. Environmental health and toxicology, 2014. 29. [Google Scholar]
  35. Jung, C. and J. Awad, Improving the IAQ for Learning Efficiency with Indoor Plants in University Classrooms in Ajman, United Arab Emirates. Buildings, 2021. 11(7). [Google Scholar]
  36. Irga, P.J., et al., Does plant species selection in functional active green walls influence VOC phytoremediation efficiency? Environmental Science and Pollution Research, 2019. 26(13): p. 12851-12858. [CrossRef] [PubMed] [Google Scholar]
  37. Stapleton, E. and P. Ruiz-Rudolph, The potential for indoor ultrafine particle reduction using vegetation under laboratory conditions. Indoor and Built Environment, 2018. 27(1): p. 70-83. [CrossRef] [Google Scholar]
  38. Fooladi, M., et al., Phytoremediation of BTEX from indoor air by Hyrcanian plants. Environmental Health Engineering and Management Journal, 2019. 6(4): p. 233-240. [CrossRef] [Google Scholar]
  39. Liu, Y.J., et al., Which ornamental plant species effectively remove benzene from indoor air? Atmospheric Environment, 2007. 41(3): p. 650-654. [CrossRef] [Google Scholar]
  40. Girman, J., Comment on the use of plants as means to control indoor air pollution. EPA (United States Environ. Prot. Agency)-NSCEP (National Serv Cent Environ Publ) https://nepis.epa.gov/Exe/ZyNET.exe/000002IB.TXT, 1992. [Google Scholar]
  41. Hormann, V., K.R. Brenske, and C. Ulrichs, Assessment of filtration efficiency and physiological responses of selected plant species to indoor air pollutants (toluene and 2-ethylhexanol) under chamber conditions. Environmental Science and Pollution Research, 2018. 25(1): p. 447-458. [CrossRef] [PubMed] [Google Scholar]
  42. Panyametheekul, S., T. Rattanapun, and M. Ongwandee, Ability of artificial and live houseplants to capture indoor particulate matter. Indoor and Built Environment, 2018. 27(1): p. 121-128. [CrossRef] [Google Scholar]
  43. Abbass, O.A., D.J. Sailor, and E.T. Gall, Effectiveness of indoor plants for passive removal of indoor ozone. Building and Environment, 2017. 119: p. 62-70. [CrossRef] [Google Scholar]
  44. Paull, N.J., P.J. Irga, and F.R. Torpy, Active botanical biofiltration of air pollutants using Australian native plants. Air Quality Atmosphere and Health, 2019. 12(12): p. 1427-1439. [CrossRef] [Google Scholar]
  45. Suarez-Caceres, G.P. and L. Perez-Urrestarazu, Removal of Volatile Organic Compounds by Means of a Felt-Based Living Wall Using Different Plant Species. Sustainability, 2021. 13(11). [Google Scholar]
  46. Dela Cruz, M., et al., Can ornamental potted plants remove volatile organic compounds from indoor air? - a review. Environmental Science and Pollution Research, 2014. 21(24): p. 13909-13928. [CrossRef] [PubMed] [Google Scholar]
  47. Gubb, C., et al., Can houseplants improve indoor air quality by removing CO2 and increasing relative humidity? Air Quality Atmosphere and Health, 2018. 11(10): p. 1191-1201. [CrossRef] [Google Scholar]
  48. Yavari, N., et al., The effect of light quality on plant physiology, photosynthetic, and stress response in Arabidopsis thaliana leaves. PloS one, 2021. 16(3): p. e0247380. [CrossRef] [PubMed] [Google Scholar]
  49. Setsungnern, A., C. Treesubsuntorn, and P. Thiravetyan, The influence of different light quality and benzene on gene expression and benzene degradation of Chlorophytum comosum. Plant Physiology and Biochemistry, 2017. 120: p. 95-102. [CrossRef] [PubMed] [Google Scholar]
  50. Sevik, H., et al., The Influence of House Plants on Indoor CO2. Polish Journal of Environmental Studies, 2017. 26(4): p. 1643-1651. [CrossRef] [Google Scholar]
  51. Dingle, P., P. Tapsell, and S. Hu, Reducing formaldehyde exposure in office environments using plants. Bulletin of Environmental Contamination & Toxicology, 2000. 64(2). [Google Scholar]
  52. Kim, H.-H., et al., Evaluation of indoor air quality and health related parameters in office buildings with or without indoor plants. Journal of the Japanese Society for Horticultural Science, 2011. 80(1): p. 96-102. [CrossRef] [Google Scholar]
  53. Lin, C.H. Optimal Indoor Plant Layout for Purifying Indoor Air. in 4th International Conference on Smart Grid and Smart Cities (ICSGSC). 2020. Electr Network. [Google Scholar]
  54. Pichlhofer, A., et al., Health-Related Benefits of Different Indoor Plant Species in a School Setting. Sustainability, 2021. 13(17). [Google Scholar]
  55. Shamsuri, M.M.S., et al. Profiling of Indoor Plant to Deteriorate Carbon Dioxide Using Low Light Intensity. in 2nd International Conference on Green Design and Manufacture (IConGDM). 2016. Phuket, THAILAND. [Google Scholar]
  56. Panyametheekul, S., et al., Foliage houseplant responses to low formaldehyde levels. Building and Environment, 2019. 147: p. 67-76. [CrossRef] [Google Scholar]
  57. Orwell, R.L., et al., Removal of benzene by the indoor plant/substrate microcosm and implications for air quality. Water Air and Soil Pollution, 2004. 157(1-4): p. 193-207. [CrossRef] [Google Scholar]
  58. Kim, H.H., et al., Evaluation of IAQ Management Using an IoT-Based Indoor Garden. International Journal of Environmental Research and Public Health, 2020. 17(6). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.