Issue |
E3S Web of Conf.
Volume 396, 2023
The 11th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC2023)
|
|
---|---|---|
Article Number | 04002 | |
Number of page(s) | 8 | |
Section | Nearly Zero Energy Buildings and Smart Energy community (Micro to Macro-scale) | |
DOI | https://doi.org/10.1051/e3sconf/202339604002 | |
Published online | 16 June 2023 |
Comparing the thermal performance of Living Lab monitoring and simulation with different level of input detail
1 Smart Energy Division, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy, michele.zinzi@enea.it
2 Department of Architecture and Design, Politecnico di Torino, Turin, Italy, giacomo.chiesa@polito.it
* Corresponding author: michele.zinzi@enea.it
Dynamic envelope solutions are critical to achieve comfort conditions minimizing the need of active air conditioning systems, emphasizing the potential of thermal adaption of the building occupants. Dynamic systems are, however, difficult to be implemented in European building energy certification schemes, based on semi-stationary calculation method, standard uses and reference boundary conditions. In the attempt to develop a flexible and dynamic method able to reduce the performance gap between real and expected performance, this paper presents the comparison between measurements and simulations of a Living Lab office operated in thermal free floating, with different strategies for the solar protection and the night ventilative cooling. Simulations were performed using the dynamic platform PREDYCE, which allows for manipulating monitored and simulated data. The first phase was dedicated to the model calibration using the indoor air temperature as relevant indicator against monitored data. The coefficient of variation of the root mean squared error is in the 8-9% range. Building simulations of the calibrated model demonstrated a large variation of the results as a function of the input data, with increase of discomfort hour up to a factor 20 and a reduction of discomfort hours up to 95%.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.