Issue |
E3S Web Conf.
Volume 399, 2023
International Conference on Newer Engineering Concepts and Technology (ICONNECT-2023)
|
|
---|---|---|
Article Number | 01009 | |
Number of page(s) | 9 | |
Section | Electronics and Electical Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202339901009 | |
Published online | 12 July 2023 |
Approximate Multiplier based on Low power and reduced latency with Modified LSB design
1 Department of Electronics and Communication Engineering Prince Shri Venkateshwara Padmavathy Engineering College, Chennai, TamilNadu, India
2 Department of Mechanical Engineering, IES College Of Technology, Bhopal, MP 462044 India
3 Tashkent State Pedagogical University, Tashkent, Uzbekistan
4 Assistant professor, Department of mechanical Engineering, K. Ramakrishnan college of technology, Tiruchirappalli
* Corresponding Author: senthilkumar.k.k.ece@psvpec.in
research@iesbpl.ac.in
hamdamovamahzuna@gmail.com
rramkumar664@gmail.com
The devised approximation multiplier can adapt the precision and processing power needed formul triplication sat run-time based on the needs of the user. To decrease error distance, we also suggest a straight forward error compensation circuit. There are two types of approximate multi pliers. Dynamic voltages caling can be used for the first kind, which controls the timing route of the multiplier. If the voltage is lower, the critical path will take longer to complete. As a result, when the time path is violated, errors occurs and approximated results are produced. These cond types involves redesigning precise multiplier circuits like the Wallace Tree Multiplier and Dadda Tree Multiplier in order to change the functional behaviors of multipliers. Most of the earlier research on rebuilding multipliers suggested erroneous m-n compressors, which have m inputs and producen outputs. It dynamically reduces the area covered under the multiplier LSB which enables the MSB in accurate manner and LSB in approximate manner. This convolution al system approach is regarded to sequential cover up more than 32 bit multiplier. Since the accompanied circuit reduce then tire area by10times lesser than original multiplier, this conventional unit is regarded as abled circuit in the segment. Since the process of compressing partial products absorbed the majority of the multiplier energy and resulted in a consider able route delay, these incorrect compressors were utilized to compress the partial products within multiplication. These functionality are over come through our experimental setup.
Key words: Approximate Multiplier / LSB / partialproduct / convolution / criticalpath
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.