Issue |
E3S Web Conf.
Volume 472, 2024
International Conference on Renewable Energy, Green Computing and Sustainable Development (ICREGCSD 2023)
|
|
---|---|---|
Article Number | 03015 | |
Number of page(s) | 12 | |
Section | Sustainable Development | |
DOI | https://doi.org/10.1051/e3sconf/202447203015 | |
Published online | 05 January 2024 |
Multi-shift spatio-temporal features assisted deep neural network for detecting the intrusion of wild animals using surveillance cameras
1 Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi Chennai, India
2 Computer Science and Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi Chennai, India
The coexistence of human populations and wildlife in shared habitats necessitates the development of effective intrusion detection systems to mitigate potential conflicts and promote harmonious relationships. Detecting the intrusion of wild animals, especially in areas where human-wildlife conflicts are common, is essential for both human and animal safety. Animal intrusion has become a serious threat to crop yield, impacting food security and reducing farmer profits. Rural residents and forestry workers are increasingly concerned about the issue of animal assaults. Drones and surveillance cam-eras are frequently used to monitor the movements of wild animals. To identify the type of animal, track its movement, and provide its position, an effective model is needed. This paper presents a novel methodology for detecting the intrusion of wild animals using deep neural networks with multishift spatio-temporal features from surveillance camera video images. The pro-posed method consists of a multi-shift attention convolutional neural net-work model to extract spatial features, a multi-moment gated recurrent unit attention model to extract temporal features, and a feature fusion network to fully explore the spatial semantics and temporal features of surveillance video images. The proposed model was tested with images from three different datasets and achieved promising results in terms of mean accuracy and precision.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.