Open Access
Issue
E3S Web Conf.
Volume 472, 2024
International Conference on Renewable Energy, Green Computing and Sustainable Development (ICREGCSD 2023)
Article Number 03015
Number of page(s) 12
Section Sustainable Development
DOI https://doi.org/10.1051/e3sconf/202447203015
Published online 05 January 2024
  1. Bradley J. Cardinale, J. Emmett Duffy, Andrew Gonzalez, David U. Hooper, Charles Perrings, Patrick Venail, Anita Narwani, Georgina M. Mace, David Tilman, David A. Wardle, et al. Biodiversity loss and its impact on humanity. Nature, 486(7401):59–67, 2012. [CrossRef] [PubMed] [Google Scholar]
  2. Agnieszka Miguel, Sara Beery, Erica Flores, Loren Klemesrud, and Rana Bayrakcismith. Finding areas of motion in camera trap images. In 2016 IEEE international conference on image processing (ICIP), pages 1334–1338. IEEE, 2016. [CrossRef] [Google Scholar]
  3. Michael A. Tabak, Mohammad S. Norouzzadeh, David W. Wolfson, Erica J. Newton, Raoul K. Boughton, Jacob S. Ivan, Eric A. Odell, Eric S. Newkirk, Reesa Y. Conrey, Jennifer Stenglein, et al. Improving the accessibility and transferability of machine learning algorithms for identification of animals in camera trap images: Mlwic2. Ecology and evolution, 10 (19): 10374–10383, 2020. [CrossRef] [PubMed] [Google Scholar]
  4. N. Banupriya, S. Saranya, R. Swaminathan, S. Harikumar, and S. Palanisamy, “Animal detection using deep learning algorithm,” J. Crit. Rev., vol. 7, no. 1, pp. 434–439, 2020. [Google Scholar]
  5. G., P., Bagal, M.U.: A smart farmland using raspberry pi crop vandalization prevention & intrusion detection system. International Journal of Advance Research and Innovative ideas in Education 1(S), 62–68 (2016). [Google Scholar]
  6. Kellenberger, B., Volpi, M., Tuia, D.: Fast animal detection in uav images using convolutional neural networks. In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 866–869 (2017). [CrossRef] [Google Scholar]
  7. Zhang, Z., He, Z., Cao, G., Cao, W.: Animal detection from highly cluttered natural scenes using spatiotemporal object region proposals and patch verification. IEEE Transactions on Multimedia 18 (10), 2079–2092 (2016). [CrossRef] [Google Scholar]
  8. D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalable object detection using deep neural networks,” in Proc. IEEE Conf. Comput. Vis.Pattern Recognit., Jun. 2014, pp. 2155–2162. [Google Scholar]
  9. G. Li and Y. Yu, “Deep contrast learning for salient object detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 478–487 [Google Scholar]
  10. A. B. Amjoud and M. Amrouch, “Object Detection Using Deep Learning, CNNs and Vision Transformers: A Review,” in IEEE Access, vol. 11, pp. 35479–35516, 2023, DOI: 10.1109/ACCESS.2023.3266093. [CrossRef] [Google Scholar]
  11. Yousif, H., Yuan, J., Kays, R., He, Z.: Fast human-animal detection from highly cluttered camera-trap images using joint background modeling and deep learning classification. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4 (2017). [Google Scholar]
  12. Matuska, S., Hudec, R., Benco, M., Kamencay, P., Zachariasova, M.: A novel system for automatic detection and classification of animal. In: 2014 ELEKTRO, pp. 76–80 (2014). [CrossRef] [Google Scholar]
  13. S. K. L and A. Edison, “Wild Animal Detection using Deep learning,” 2022 IEEE 19th India Council International Conference (INDICON), Kochi, India, 2022, pp. 1–5, DOI: 10.1109/INDICON56171.2022.10039799. [Google Scholar]
  14. Tan M., Chao W., Cheng J.-K., Zhou M., Ma Y., Jiang X., Ge J., Yu L., Feng L. Animal Detection and Classification from Camera Trap Images Using Different Mainstream Object Detection Architectures. Animals. 2022; 12 (15): 1976. https://doi.org/10.3390/ani12151976. [CrossRef] [Google Scholar]
  15. T. Liang, H. Bao, W. Pan, X. Fan, and H. Li, “DetectFormer: Categoryassisted transformer for traffic scene object detection,” Sensors, vol. 22, no. 13, p. 4833, Jun. 2022. [CrossRef] [PubMed] [Google Scholar]
  16. T. Liang, H. Bao, W. Pan, and F. Pan, “Traffic sign detection via improved sparse R- CNN for autonomous vehicles,” J. Adv. Transp., vol. 2022, pp. 1–16, Mar. 2022 [Google Scholar]
  17. C.Y. Wang, I.-H. Yeh, and H.-Y. Mark Liao, “You only learn one representation: Unified network for multiple tasks,” 2021, arXiv:2105.04206. [Google Scholar]
  18. Parham, J., Stewart, C., Crall, J., Rubenstein, D., Holmberg, J., Berger-Wolf, T.: An animal detection pipeline for identification. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1075–1083 (2018). [CrossRef] [Google Scholar]
  19. H. Gammulle, S. Denman, S. Sridharan, and C. Fookes, “Two stream LSTM: A deep fusion framework for human action recognition,” in Proc IEEE Winter Conf. Appl. Comput. Vis. (WACV), Mar. 2017, pp. 177–186. [Google Scholar]
  20. Zhaoyang Niu, Guoqiang Zhong, Hui Yu. “A review on the attention mechanism of deep learning”, Neurocomputing, Sep. 2021, pp. 48–62. [CrossRef] [Google Scholar]
  21. Kai Chen, Hang Song, Chen Change Loy, Dahua Lin. “Discover and Learn New Objects from Documentaries”, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017. [Google Scholar]
  22. Kays, Roland, et al.: ‘Monitoring wild animal communities with arrays of motion sensitive camera traps.’ arXiv preprint arXiv:1009.5718 (2010). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.