Issue |
E3S Web Conf.
Volume 484, 2024
The 4th Faculty of Industrial Technology International Congress: Development of Multidisciplinary Science and Engineering for Enhancing Innovation and Reputation (FoITIC 2023)
|
|
---|---|---|
Article Number | 03003 | |
Number of page(s) | 9 | |
Section | Energy Technologies and Sustainability | |
DOI | https://doi.org/10.1051/e3sconf/202448403003 | |
Published online | 07 February 2024 |
Synthesis of Metal-Organic Frameworks Zinc (II) with Optimum Slow Pyrolysis Process for Conductivity Performance
1,2,4 Chemical Engineering Department. Universitas Negeri Semarang, 50229 Semarang, Indonesia
3 Physics Department. Universitas Negeri Semarang, 50229 Semarang, Indonesia
* Corresponding author: wdpitar@mail.unnes.ac.id
Metal-organic frameworks are one of the materials that currently have the potential as an anode material to replace graphite. It also has the advantages of large specific surface area, storage space and high gas absorption with high pore volume and good conductivity. The purpose of this study was to determine the optimum temperature for the synthesis of Metal-Organic Frameworks to obtain conductivity performance. Zinc nitrate hexahydrate and acetic acid were mixed in N, N-Dimthylformamide solvent at various temperatures of 250-650°C for 4 hours with a slow pyrolysis process and proceeded with precipitation. Solid Metal-Organic Frameworks formed were characterized using Scanning Electron Microscopy, X-ray diffraction, Fourier Transform Infra-Red, and IV-Meter. The crystal form is nanocubes of a layered metal-organic framework of Zinc (II) that penetrates each other in a hexagonal shape. The crystal contains zinc oxide with hydroxyl and carboxylic functional groups. Metal-organic synthesis occurs at an optimum reaction temperature of 450°C, showing high conductivity, with the fastest current increase, reaching a current of 3.82E-08 A at a voltage of 0.05 V.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.