Issue |
E3S Web Conf.
Volume 516, 2024
10th Conference on Emerging Energy and Process Technology (CONCEPT 2023)
|
|
---|---|---|
Article Number | 06002 | |
Number of page(s) | 7 | |
Section | Safety | |
DOI | https://doi.org/10.1051/e3sconf/202451606002 | |
Published online | 15 April 2024 |
Numerical analysis of vapor dispersion from compressed hydrogen (H2) storage vessels
1 Centre of Hydrogen Energy (CHE), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
2 Energy Management Group, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
* Corresponding author: rafiziana@utm.my
The rising demand for hydrogen fuel, driven by the emergence of fuel cell electric vehicles, underscores the need to optimize refueling station efficiency and affordability while prioritizing safety and performance. Compressed gas hydrogen storage emerges as a practical solution however safety across production, storage, and distribution is paramount for broader acceptance of hydrogen technologies. Any incidents could undermine public trust, emphasizing the importance of mitigating risks such as hydrogen leakage. This study investigates hydrogen dispersion and conducts consequence analyses for potential hazards, considering stability, ambient temperature, wind speed, and process parameters like vessel temperature, pressure, and leakage diameter. It assesses various scenarios, including high-pressure storage vessels and generic refueling station layouts, by employing integral models of ALOHA, PHAST and HyRAM. Findings showed that process parameters significantly influence hazard severity, with leakage diameter having a notable impact. Common safety vulnerabilities in fuel cell vehicles and refueling stations are highlighted, emphasizing adherence to international regulations and standards for enhanced safety protocols.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.