Issue |
E3S Web of Conf.
Volume 517, 2024
The 10th International Conference on Engineering, Technology, and Industrial Application (ICETIA 2023)
|
|
---|---|---|
Article Number | 12005 | |
Number of page(s) | 5 | |
Section | Materials Science | |
DOI | https://doi.org/10.1051/e3sconf/202451712005 | |
Published online | 15 April 2024 |
Analysis of the Resistance of Self-Compacting Concrete (SCC) with the Use of Granite Stone Waste to Alkali-Silica Reaction
Faculty of Engineering Universitas Muhammadiyah Surakarta, Jl. A. Yani No. 157 Pabelan Sukoharjo, 57169, Jawa Tengah, Indonesia
* Corresponding author: msolikin@ums.ac.id
Aggregates occupy ±70% of the concrete volume and their quality must meet specifications. Concrete surfaces submerged in water for a long time cause concrete failure due to the reaction between aggregate and cement to form silica gel. The wear value of granite is less than gravel, so this study used granite as a substitute for coarse aggregate. This study was conducted to assess the resistance of SCC concrete with 0%, 25%, and 30% granite stone variations to alkali-silica reaction attack. The experimental method was applied to the study with ACI method mix design as well as 25 MPa plan fc'. Concrete cylinder samples 150 mm x 300 mm aged 28 days were used in the compressive strength test, alkali-silica reaction expansion test used mortar block samples 285 mm x 25 mm x 25 mm in 80±2˚C NaOH solution bath for 14 days. The optimum compressive strength of 32.17 MPa and the lowest percentage change in length of 0.04% was obtained by sample BG.25-SCC, indicating that granite stone is not reactive to silica alkali reaction because the percentage change in length <0.10%. This study concludes that granite stone can improve the resistance of concrete to silica alkali reaction.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.