Open Access
Issue
E3S Web Conf.
Volume 523, 2024
53rd AiCARR International Conference “From NZEB to ZEB: The Buildings of the Next Decades for a Healthy and Sustainable Future”
Article Number 02001
Number of page(s) 14
Section Integration of Control and Building Automation Systems
DOI https://doi.org/10.1051/e3sconf/202452302001
Published online 07 May 2024
  1. E. Papadis and G. Tsatsaronis, Challenges in the decarbonization of the energy sector. Energy. 205, 118025, (2020). https://doi.org/10.1016/j.energy.2020.118025 [CrossRef] [Google Scholar]
  2. Eurostat, Energy statistics an overview. (2023). https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_statistics_-_an_overview [Google Scholar]
  3. European Union, A European Green Deal. (2023). https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en [Google Scholar]
  4. M. A. Zehir, A. Batman, and M. Bagriyanik, Review and comparison of demand response options for more effective use of renewable energy at consumer level. Renewable and Sustainable Energy Reviews. 56, 631–642, (2016). https://doi.org/10.1016/j.rser.2015.11.082 [CrossRef] [Google Scholar]
  5. G. Chantzis, E. Giama, S. Nižetić, and A. M. Papadopoulos, The potential of demand response as a tool for decarbonization in the energy transition. Energy and Buildings. 296, 113255, (2023). https://doi.org/10.1016/j.enbuild.2023.113255 [CrossRef] [Google Scholar]
  6. U.S. Department of Energy, “Benefits of Demand Response in Electricity Markets and Reccomandations for Achieving them A Report to the United States Congress Pursuant to Section 1252 of the Energy Policy Act of 2005,” 2006. [Google Scholar]
  7. P. Bradley, M. Leach, and J. Torriti, A review of the costs and benefits of demand response for electricity in the UK. Energy Policy. 52, 312–327, (2013). https://doi.org/10.1016/j.enpol.2012.09.039 [CrossRef] [Google Scholar]
  8. M. H. Albadi and E. F. El-Saadany, A summary of demand response in electricity markets. Electric Power Systems Research. 78, 1989–1996, (2008). https://doi.org/10.1016/j.epsr.2008.04.002 [CrossRef] [Google Scholar]
  9. N. Good, K. A. Ellis, and P. Mancarella, Review and classification of barriers and enablers of demand response in the smart grid. Renewable and Sustainable Energy Reviews. 72, 57–72, (2017). https://doi.org/10.1016/j.rser.2017.01.043 [CrossRef] [Google Scholar]
  10. J. Torriti, M. G. Hassan, and M. Leach, Demand response experience in Europe: Policies, programmes and implementation. Energy. 35, 1575–1583, (2010). https://doi.org/10.1016/j.energy.2009.05.021 [CrossRef] [Google Scholar]
  11. Q. Wang, C. Zhang, Y. Ding, G. Xydis, J. Wang, and J. Østergaard, Review of real-time electricity markets for integrating Distributed Energy Resources and Demand Response. Applied Energy. 138, 695–706, (2015). https://doi.org/10.1016/j.apenergy.2014.10.048 [CrossRef] [Google Scholar]
  12. M. H. Imani, M. J. Ghadi, S. Ghavidel, and L. Li, Demand Response Modeling in Microgrid Operation: a Review and Application for Incentive-Based and Time-Based Programs. Renewable and Sustainable Energy Reviews. 94, 486–499, (2018). https://doi.org/10.1016/j.rser.2018.06.017 [CrossRef] [Google Scholar]
  13. F. Shariatzadeh, P. Mandal, and A. K. Srivastava, Demand response for sustainable energy systems: A review, application and implementation strategy. Renewable and Sustainable Energy Reviews. 45, 343–350, (2015). https://doi.org/10.1016/j.rser.2015.01.062 [CrossRef] [Google Scholar]
  14. H. T. Haider, O. H. See, and W. Elmenreich, A review of residential demand response of smart grid. Renewable and Sustainable Energy Reviews. 59, 166–178, (2016). https://doi.org/10.1016/j.rser.2016.01.016 [CrossRef] [Google Scholar]
  15. I. Hussain, S. Mohsin, A. Basit, Z. A. Khan, U. Qasim, and N. Javaid, A Review on Demand Response: Pricing, Optimization, and Appliance Scheduling. Procedia Computer Science. 52, 843–850, (2015). https://doi.org/10.1016/j.procs.2015.05.141 [CrossRef] [Google Scholar]
  16. F. Babonneau, M. Caramanis, and A. Haurie, A linear programming model for power distribution with demand response and variable renewable energy. Applied Energy. 181, 83–95, (2016). https://doi.org/10.1016/j.apenergy.2016.08.028 [CrossRef] [Google Scholar]
  17. A. Rafinia, J. Moshtagh, and N. Rezaei, Towards an enhanced power system sustainability: An MILP under-frequency load shedding scheme considering demand response resources. Sustainable Cities and Society. 59, 102168, (2020). https://doi.org/10.1016/j.scs.2020.102168 [CrossRef] [Google Scholar]
  18. M. Tostado-Véliz, A. A. Ghadimi, M. R. Miveh, D. Sánchez-Lozano, A. Escamez, and F. Jurado, A Novel Stochastic Mixed-Integer-Linear-Logical Programming Model for Optimal Coordination of Hybrid Storage Systems in Isolated Microgrids Considering Demand Response. Batteries. 8, (2022). 10.3390/batteries8110198 [Google Scholar]
  19. E. Dal Cin, G. Carraro, G. Volpato, A. Lazzaretto, and P. Danieli, A multi-criteria approach to optimize the design-operation of Energy Communities considering economic-environmental objectives and demand side management. Energy Conversion and Management. 263, 115677, (2022). https://doi.org/10.1016/j.enconman.2022.115677 [CrossRef] [Google Scholar]
  20. G. Volpato, G. Carraro, M. Cont, P. Danieli, S. Rech, and A. Lazzaretto, General guidelines for the optimal economic aggregation of prosumers in energy communities. Energy. 258, 124800, (2022). https://doi.org/10.1016/j.energy.2022.124800 [CrossRef] [Google Scholar]
  21. C. Henggeler Antunes, M. J. Alves, and I. Soares, A comprehensive and modular set of appliance operation MILP models for demand response optimization. Applied Energy. 320, 119142, (2022). https://doi.org/10.1016/j.apenergy.2022.119142 [CrossRef] [Google Scholar]
  22. H. T. Dinh, K.-h. Lee, and D. Kim, Supervised-learning-based hour-ahead demand response for a behavior-based home energy management system approximating MILP optimization. Applied Energy. 321, 119382, (2022). https://doi.org/10.1016/j.apenergy.2022.119382 [CrossRef] [Google Scholar]
  23. Veil Energy, e.boost. (2024). https://veil-energy.eu/prodotti/eem/ [Google Scholar]
  24. Y. Wang, Y. Ma, F. Song, Y. Ma, C. Qi, F. Huang, et al., Economic and efficient multi-objective operation optimization of integrated energy system considering electro-thermal demand response. Energy. 205, 118022, (2020). https://doi.org/10.1016/j.energy.2020.118022 [CrossRef] [Google Scholar]
  25. European Commission, Photovoltaic Geographical Information System (PVGIS). (2024). https://re.jrc.ec.europa.eu/pvg_tools/it/#MR [Google Scholar]
  26. DESTATIS Statisches Bundesmat, Data on energy price trends - Long-time series to Dezember 2022. (2023). https://www.destatis.de/EN/Themes/Economy/Prices/Publications/Downloads-Energy-Price-Trends/energy-price-trends-pdf-5619002.html [Google Scholar]
  27. J. Stute and M. Kühnbach, Dynamic pricing and the flexible consumer – Investigating grid and financial implications: A case study for Germany. Energy Strategy Reviews. 45, 100987, (2023). https://doi.org/10.1016/j.esr.2022.100987 [CrossRef] [Google Scholar]
  28. Electricity Maps, Emissioni di CO2 in tempo reale del consumo elettrico. (2023). https://app.electricitymaps.com/map [Google Scholar]
  29. SMARD Bundesnetzagentur, Market data. (2023). https://www.smard.de/en [Google Scholar]
  30. Danish Energy Agency, Technology Data. (2023). https://ens.dk/en/our-services/projections-and-models/technology-data [Google Scholar]
  31. P. Sterchele, J. Brandes, J. Heilig, D. Wrede, C. Kost, T. Schlegl, et al., “Paths to a Climate-Neutral Energy System. The German Energy Transition in its Social Context,“ Fraunhofer ISE 2020. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html [Google Scholar]
  32. S. Rech, Smart Energy Systems: Guidelines for Modelling and Optimizing a Fleet of Units of Different Configurations. Energies. 12, 1320, (2019). doi:10.3390/en12071320 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.