Issue |
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
|
|
---|---|---|
Article Number | 07009 | |
Number of page(s) | 8 | |
Section | Behaviour, Characterization and Modelling of Various Geomaterials and Interfaces - Physical and Numerical Modelling | |
DOI | https://doi.org/10.1051/e3sconf/202454407009 | |
Published online | 02 July 2024 |
Clay micromechanics: Mapping the future of particle-scale modelling of clay
1 University of Glasgow, James Watt School of Engineering, United Kingdom, Glasgow
2 The University of Sydney, School of Engineering, Sydney, Australia
3 King Fahd University of Petroleum and Minerals, Center for Integrative Petroleum Research, Saudi Arabia
4 Laboratoire de Mécanique et Génie Civil, CNRS, Université de Montpellier, Montpellier, France
5 Imperial College, Department of Civil and Environmental Engineering, United Kingdom, London
* Corresponding author: arianna.pagano@glasgow.ac.uk
Geotechnical engineers need to predict the macroscopic behaviour of clays in terms of strength, stiffness, and permeability and the variation in these properties during deformation. Engineers also need to predict the influence of environmental variables (temperature, pressure, pore-fluid chemistry) on these engineering properties. Particle-based methods, which explicitly model individual clay platelets and their interactions, can help identify the fundamental mechanisms that govern the engineering behaviour. Virtual samples can be created, and simulations can consider application of mechanical loading or change in the environmental conditions to generate data on particle kinematics and interparticle interactions. Particlebased models can be used to simulate stress and strain paths that are not easy to reproduce in physical experiments. This approach to simulation also enables parametric studies to understand the sensitivity of the overall behaviour to various particle characteristics and the nature of the particle interactions. This contribution provides a review of the state-of-theart of existing particle-based models for clays, namely Discrete Element Method (DEM), Monte Carlo method (MC), and Molecular Dynamics (MD). The technical challenges, advantages, and disadvantages of each method for the simulation of clays are presented and discussed, together with the technical developments we would like to see over the next decade to realize the full potential of these modelling tools.
Key words: clay modelling / clay micromechanics / DEM / MD / MC
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.