Open Access
Issue |
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
|
|
---|---|---|
Article Number | 07009 | |
Number of page(s) | 8 | |
Section | Behaviour, Characterization and Modelling of Various Geomaterials and Interfaces - Physical and Numerical Modelling | |
DOI | https://doi.org/10.1051/e3sconf/202454407009 | |
Published online | 02 July 2024 |
- Alder, B. J., and T. E. Wainwright. 1959. “Studies in Molecular Dynamics. I. General Method.” The Journal of Chemical Physics 31 (2): 459. doi:10.1063/1.1730376. [Google Scholar]
- Allen, M. P., and D. J. Tildesley. 2017. Computer Simulation of Liquids: Second Edition. Oxford Scholarship Online. [CrossRef] [Google Scholar]
- Amipour, P., and K. J. Sjoblom. 2019. “Multi-scale modeling of kaolinite triaxial behaviour.” Geotechnique Letters 9: 178–185. [CrossRef] [Google Scholar]
- Anandarajah, A. 1994. “Discrete-Element Method for Simulating Behavior of Cohesive Soil.” Journal of Geotechnical Engineering 20 (9). [Google Scholar]
- Anandarajah, A. 1999. “Multiple time-stepping scheme for the discrete element analysis of colloidal particles.” Powder Technology 106 (1–2): 132–141. [CrossRef] [Google Scholar]
- Anandarajah, A. 2000. “Numerical simulation of onedimensional behaviour of a kaolinite.” Géotechnique 50 (5): 509–519. doi:10.1680/geot.2000.50.5.509. [CrossRef] [Google Scholar]
- Anandarajah, A., and J. Chen. 1997. “Van der Waals attractive force between clay particles in water and contaminants.” Soils and Foundations 37 (2): 27–37. [CrossRef] [Google Scholar]
- Anandarajah, A., and P. M. Amarasinghe. 2012. “Discreteelement study of the swelling behaviour of Namontmorillonite.” Geotechnique. doi:10.1680/geot.12.P.012. [Google Scholar]
- Azema, E., and F. Radjai. 2012. “Force chains and contact network topology in sheared packings of elongated particles.” Physical Review E 85. doi:10.1103/PhysRevE.85.031303. [Google Scholar]
- Bandera, S, C. O’Sullivan, P. Tangney, and Stefano Angioletti- Uberti. 2021. “Coarse-grained molecular dynamics simulations of clay compression.” Computers and Geotechnics 138: 104333. doi:10.1016/j.compgeo.2021.104333. [Google Scholar]
- Bandera, S. 2022. Fundamental Analysis of the Influence of Structure on Clay Behaviour (PhD). London: Imperial College London. [Google Scholar]
- Bayesteh, H., and A. A. Mirghasemi. 2013. “Numerical simulation of pore fluid characteristic effect on the volume change behavior of montmorillonite clays.” Computers and Geotechnics 48: 146–155. doi:10.1016/j.compgeo.2012.10.007. [CrossRef] [Google Scholar]
- Bayesteh, H., and A. Hoseini. 2021. “Effect of mechanical and electro-chemical contacts on the particle orientation of clay minerals during swelling and sedimentation: A DEM simulation.” Computers and Geotechnics 130: 103913. doi:10.1016/j.compgeo.2020.103913. [Google Scholar]
- Berendsen, H. J. C., J. P. M. Postma, W. F. van Gunsteren, and J. Hermans. 1981. “Interaction models for water in relation to protein hydration.” In Intermolecular Forces, 331. [Google Scholar]
- Boton, M., E. Azema, N. Estrada, F. Radjai, and A. Lizcano. 2013. “Quasistatic rheology and microstructural description of sheared granular materials composed of platy particles.” Phys. Rev. E. [Google Scholar]
- Boton, M., N. Estrada, E. Azema, and F. Radjai. 2014. “Particle alignment and clustering in sheared granular materials composed of platy particles.” Eur. Phys. J. E. [Google Scholar]
- Carrier, B. 2014. Influence of water on the short-term and longterm mechanical properties. Universite Paris-Est. [Google Scholar]
- Cundall, P. A. 2001. “A discontinuous future for numerical modelling in geomechanics?” Geotechnical Engineering Proceedings of the Institution of Civil Engineers. 41–47. [Google Scholar]
- Cundall, P. A. 1988. “Formulation of a three-dimensional distinct element model—Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks.” International journal of rock mechanics and mining sciences & geomechanics abstracts 25 (3): 107–116. [CrossRef] [Google Scholar]
- Cundall, P. A., and O. D. L. Strack. 1979. “A discrete numerical model for granular assemblies.” Géotechnique 29 (1): 47–65. doi:10.1680/geot.1979.29.1.47. [CrossRef] [Google Scholar]
- Cundall, P. A., and R. D. Hart. 1993. Analysis and design methods. Pergamon. [Google Scholar]
- Cygan, R. T., J. J. Liang, and A. G. Kalinichev. 2004. “Molecular models of hydroxide,oxyhydroxide, and clay phases and the development of a general force field.” J. Phys.Chem. B 108: 1255–1266. doi:10.1021/jp0363287. [CrossRef] [Google Scholar]
- de Bono, J. P., and G. R. McDowell. 2022. “Discrete element modelling of normal compression of clay.” Journal of the Mechanics and Physics of Solids 104847. doi:10.1016/j.jmps.2022.104847. [Google Scholar]
- Dragulet, F., A. Goyal, K. Ioannidou, R. J M. Pellenq, and E. Del Gado. 2022. “Ion specificity of confined ion-water structuring and nanoscale surface forces in clays.” J. Phys. Chem. B 126 (26): 4977–4989. [CrossRef] [PubMed] [Google Scholar]
- Ebrahimi, D. 2014. Multiscale modeling of clay-water systems. Massachusetts Institute of Technology. [Google Scholar]
- Ercolessi, F. 1997. “A molecular dynamics primer.” [Google Scholar]
- Galindo-Torres, S. A., F. Alonso-Marroquin, Y. C. Wang,, D. Pedroso, and J. M. Castano. 2009. “Molecular dynamics simulation of complex particles in three dimensions and the study of friction due to nonconvexity.” Physical Review E 79 (6): 060301. [CrossRef] [PubMed] [Google Scholar]
- Gay, J. G., and B. J. Berne. 1981. “Modification of the overlap potential to mimic a linear sitesite.” J. Chem. Phys. 74: 3316–3319. Goldstein, H. 1983. Classical Mechanics . [Google Scholar]
- Holtzman, R., D. B. Silin, and T. W. Patzek. 2009. “Mechanical properties of granular materials: A variational approach to grain-scale simulations.” International Journal for Numerical and Analytical Methods in Geomechanics 33 (3): 391–404. doi:10.1002/nag.725. [CrossRef] [Google Scholar]
- Jaradat, K. A., and S. L. Abdelaziz. 2019. “On the use of discrete element method for multi-scale assessment of clay behaviour.” Computers and Geotechnics 112: 329–341. doi:10.1016/j.compgeo.2019.05.001. [CrossRef] [Google Scholar]
- Jean, M. 1999. “The non-smooth contact dynamics method.” Computer Methods in Applied Mechanics and Engineering 177 (3–4): 235–257. doi:10.1016/S0045-7825(98)00383-1. [CrossRef] [Google Scholar]
- Karapiperis, K., J. Harmon, E. Ando, G. Viggiani, and J. E. Andrade. 2020. “Investigating the Incremental Behavior of Granular Materials with the Level-Set Discrete Element Method.” Journal of the Mechanics and Physics of Solids. doi:https://doi.org/10.1016/j.jmps.2020.104103. [Google Scholar]
- Khabazian, M., A. A. Mirghasemi, and H. Bayesteh. 2018. “Compressibility of montmorillonite/kaolinite mixtures in consolidation testing using discrete element method.” Computers and Geotechnics 104: 271–280. doi:10.1016/j.compgeo.2018.09.005. [CrossRef] [Google Scholar]
- Kwok, C. Y., and M. D. Bolton. 2010. “DEM simulations of thermally activated creep in soils.” Geotechnique 60 (6): 425–433. doi:10.1680/geot.2010.60.6.425. [CrossRef] [Google Scholar]
- Liu, J., C. L. Lin, and J. D. Miller. 2015. “Simulation of cluster formation from kaolinite.” Int. J. Miner. Process. 145: 38–47. [Google Scholar]
- Luo, L., Z. Shen, H. Gao, Z. Wang, and X. Zhou. 2021. “Macroscopic Behavior and Microscopic Structure Evolution of Marine Clay in One-Dimensional Compression Revealed by Discrete Element Simulation.” MDPI. doi:10.3390/pr9122259. [Google Scholar]
- Mitchell, J. K., and K. Soga. 2005. Fundamentals of Soil Behaviour. Hoboken, New Jersey: John Wiley & Sons, Inc. [Google Scholar]
- Moreau, J. J. 1994. “Sorne numerical methods in multibody dynamics: application to granular materials.” European Journal of Mechanics-A/Solids. [Google Scholar]
- O’Sullivan, C. 2002. The application of discrete element modelling to finite deformation problems in geomechanics. University of California, Berkeley. [Google Scholar]
- Pagano, A. G., V. Magnanimo, and A. Tarantino. 2020. “Exploring the micromechanics of non-active clays by way of virtual DEM experiments.” Géotechnique 70 (4): 303–316. doi:10.1680/jgeot.18.P.060. [CrossRef] [Google Scholar]
- Pathirannahalage, S. P. K., N. Meftahi, A. Elbourne, A. C. G. Weiss, C. F. McConville, A. Padua, D. A. Winkler, et al. 2021. “Systematic Comparison of the Structural and Dynamic Properties of Commonly Used Water Models for Molecular Dynamics Simulations.” Journal of Chemical Information and Modeling 61 (9): 4521–4536. doi:10.1021/acs.jcim.1c00794. [CrossRef] [PubMed] [Google Scholar]
- Pedrotti, M., and A. Tarantino. 2017. “An experimental investigation into the micromechanics of non-active clays.” Géotechnique. doi:10.1680/jgeot.16.P.245. [Google Scholar]
- Plimpton, S. 1995. “Fast Parallel Algorithms for Short-Range Molecular Dynamics.” J. Comp. Phys. 117: 1–19. [Google Scholar]
- Pournin, L., and T. M. Liebling. 2005. “A generalization of distinct element method to tridimensional particles with complex shapes.” Powders and grains 1375–1378. [Google Scholar]
- Pournin, L., M. Weber, M. Tsukahara, J. A. Ferrez, M. Ramaioli, and T. M. Liebling. 2005. “Three-dimensional distinct element simulation of spherocylinder crystallization.” Granular Matter 7 (2): 119–126. [CrossRef] [Google Scholar]
- Pouvreau, M., J. A. Greathouse, R. T. Cygan, and A. G. Kalinichev. 2019. “Structure of Hydrated Kaolinite Edge Structures: DFT Results and Further Development of the ClayFF Classical Force Field with Metal O-H Angle Bending Terms.” J. Phys. Chem. C 123: 11628−11638. [CrossRef] [Google Scholar]
- Radjai, F., and V. Richefeu. 2009. “Contact dynamics as a nonsmooth discrete element method.” Mechanics of Materials 41: 715–728. [CrossRef] [Google Scholar]
- Roux, B. 1995. “The calculation of the potential of mean force using computer simulations.” Computer Physics Communications 91 (1–3):, 275–282. [CrossRef] [Google Scholar]
- Sjoblom, K. J. 2016. “Coarse-grained molecular dynamics approach to simulating clay.” J. Geotech. Geoenvir. Eng. 142: 1–6. [CrossRef] [Google Scholar]
- Sposito, G. 1989. The Chemistry of Soils. New York, Oxford: Oxford University Press. [Google Scholar]
- Tambach, T. J., E. J. M. Hensen, and B. Smit. 2004. “Molecular Simulations of Swelling Clay Minerals.” J. Phys. Chem. B 108 (23): 7586–7596. [CrossRef] [Google Scholar]
- Tang, F. H., F. Alonso-Marroquin, and F. Maggi. 2014. “Stochastic collision and aggregation analysis of kaolinite in water through experiments and the spheropolygon theory.” Water research 53: 180–190. [CrossRef] [PubMed] [Google Scholar]
- Thornton, C. 2000. “Numerical simulations of deviatoric shear deformation of granular media.” Géotechnique 50 (1): 43–53. [CrossRef] [Google Scholar]
- Thornton, C., and C. W. Randall. 1988. “Applications of theoretical contact mechanics to solid particle system simulations.” In Micromechanics of granular materials, by K. Satake and J. T. Jenkins, 245–252. Elsevier. [Google Scholar]
- Thornton, C., and K. Yin. 1991. “Impact of elastic spheres with and without adhesion.” Powder technology 65: 153–166. [CrossRef] [Google Scholar]
- Timoshenko, S., and S. Woinowsky-Krieger. 1959. Theory of plates and shells. Vol. 2. New York: McGraw-hill. [Google Scholar]
- Volkova, E., A. K. Narayanan Nair, J. Engelbrecht, U. Schwingenschlogl, S. Sun, and G. Stenchikov. 2021. “Molecular Dynamics Modeling of Kaolinite Particle Associations.” Journal of Physical Chemistry C 125 (43): 24126–24136. doi:10.1021/acs.jpcc.1c06598. [CrossRef] [Google Scholar]
- Wang, Y., and F. Alonso-Marroquin. 2009. “A finite deformation method for discrete modeling: particle rotation and parameter calibration.” Granular matter 11 (5): 331–343. [CrossRef] [Google Scholar]
- Yao, M., and A. Anandarajah. 2003. “Three-Dimensional Discrete Element Method of Analysis of Clays.” Journal of Engineering Mechanics 129 (6): 585–596. doi:10.1061/~ASCE!0733-9399~2003!129:6~585! [CrossRef] [Google Scholar]
- Zhu, H., A. J. Whittle, R. J. M. Pellenq, and K. Ioannidou. 2019. “Mesoscale simulation of aggregation of imogolite nanotubes from potential of mean force interactions.” Molecular Physics 117 (22): 3445–3455. doi:10.1080/00268976.2019.1660817. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.