Issue |
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
|
|
---|---|---|
Article Number | 07004 | |
Number of page(s) | 8 | |
Section | Behaviour, Characterization and Modelling of Various Geomaterials and Interfaces - Physical and Numerical Modelling | |
DOI | https://doi.org/10.1051/e3sconf/202454407004 | |
Published online | 02 July 2024 |
Linking sand permeability anisotropy to fabric anisotropy via numerical simulation
Imperial College London, Department of Civil and Environmental Engineering, London, UK
* Corresponding author: t.morimoto@imperial.ac.uk
Characterisation of the permeability of soils is of practical importance and, for cohesionless or granular soils, it can be predicted from the void ratio and the particle size distribution (PSD). However, the effect of fabric anisotropy on the permeability is rarely discussed. Restricting consideration to granular (cohesionless) soil, this study combines a variety of numerical methods to investigate (1) how the anisotropy of the permeability evolves as the soil fabric anisotropy evolves in triaxial deformation and (2) establish a link between the anisotropy of the permeability and the fabric anisotropy. The Discrete Element Method (DEM) was employed to create linearly graded virtual samples of spheres (Cu of 1 to 2). Initially isotropic sphere packings were subjected to triaxial compression or triaxial extension up to 30% of absolute axial strain to induce an anisotropic fabric. Pore Network Models (PNMs) present a computationally efficient option for simulation of flow through the pore space. A PNM models fluid flow between pores (nodes) connected by pipes (edges) whose geometry is defined by the topology of the connected pores and the mass balance equation is solved at each pore. After demonstrating the accuracy of the PNM framework adopted here, this contribution presents data from PNM simulations that used the positions of individual particles in the sheared spherical packings as input data. The fabric and permeability anisotropies during triaxial shear deformation were compared at axial strain intervals of 1%. Detailed microscale analyses suggest that the anisotropy in the permeability can be attributed to an increase in the local conductance of fluid pipes in the direction of the major principal stress, which is related to the evolution of the pore topologies during the shear deformation.
Key words: Permeability / Anisotropy / Fabric tensor / Pore Network Model / Computational Fluid Dynamics
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.