Open Access
E3S Web of Conferences
Volume 1, 2013
Proceedings of the 16th International Conference on Heavy Metals in the Environment
Article Number 13003
Number of page(s) 4
Section Remediation and Phyto-Remediation II: Plants
Published online 23 April 2013
  1. Aldrich, M. V., Gardea-Torresdey, J. L., Peralta-Videa, J. R. and Parsons, J.G.(2003):Uptake andreductionof Cr (VI) to Cr (III) by mesquite (prosopis spp): chromateplant interaction in hydroponics and solid media studied using XAS. Environ. Sci. Technol., 37: 1859–1864. [CrossRef] [Google Scholar]
  2. Alkorta, I., Hernandez-Allica, J., Becerril, J. M., Amazaga, I., Albizu, I. andGarbisu, C.(2004). Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead and arsenic. Rev. Envi. Sci. Biothechnol.,3: 71–90. [Google Scholar]
  3. Agunbiade, F. O. and Fawale, A. T.( 2009). Use of Siam weeds biomarker in assessing heavy metal contaminations in traffic and solid waste polluted areas. Int. J. Env. Sci. Tech. 6 (2), 267–276. [CrossRef] [Google Scholar]
  4. Evangelou, M. W. H., Ebel, M.and Schaeffer, A. (2006). Evaluation of the effect of small organic acidson phytoextraction of Cu and Pb from soil with tobacco (Nicotiana tabacum).Chemosphere., 63: 996–1004. [CrossRef] [PubMed] [Google Scholar]
  5. Evangelou, M.W.H., Ebel, M., Schaeffer, A. (2007). Chelate assistedphytoextraction of heavy metals from soils. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere, 68: 989–1003. [CrossRef] [PubMed] [Google Scholar]
  6. Luo, C. L., Shen, Z. G. and Li, X. D. (2005). Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere, 59: 1–11. [CrossRef] [PubMed] [Google Scholar]
  7. Lai, H.Y. and Chen, Z.S. (2005). The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis). Chemosphere. 60: 1062–1071. [CrossRef] [PubMed] [Google Scholar]
  8. Madejon, P., Murillo, J. M., Maranon, T., Espinar, J. L. and Cabrera, F( 2006). Accumulation of As, Cd and selected trace elements in tubers of Scirpus maritimus L. from Donana marshes (South Spain). Chemosphere 64 (5), 742–748. [CrossRef] [PubMed] [Google Scholar]
  9. Mant, C., Costa, S., Williams, J. and Tambourgi, E. (2006). Phytoremediation of chromium by model constructed wetland. Boiresource Technol., 97: 1767–1772. [CrossRef] [Google Scholar]
  10. Marques, A. P. G. C., Oliveira, R. S., Sam-ardjieva, K. A., Pissarra, J., Rangel, A. O. S. S. and Castro, P. M. L. (2008). EDDS and EDTA-enhanced zinc accumulation by Solanum nigrum inoculated with Arbuscular mycorrhizal fungi grown in contaminated soil. Chemosphere, 70:1002–1014. [CrossRef] [PubMed] [Google Scholar]
  11. Sun, Y. B., Zhou, Q. X., Wang, L.and Liu, W. T. (2009). The influence of different growth stages and dosage of EDTA on Cd uptake and accumulation in Cdhyperaccumulator (Solanium nigrum L.). Bull. Environ. Contam. Toxicol., 82:348–353. [CrossRef] [PubMed] [Google Scholar]
  12. Uwumarongie, E. G., Igene, H. A. and Ediagbonya, T. F. (2008). Assessment of heavy metal contaminated soil from automobile workshop in Benin City. Chem. Tech J. 4: 90–95. [Google Scholar]
  13. Yuebing, S.,Qixing, Z., Yingming, X., yingming, X., Lin W. and Xuefeng, L. (2011). The role of EDTA on cadmium phytoextraction in a cadmiumhyperaccumulator Rorippa globosa. J. of Environ and Eco. 3(3): 45–51. [Google Scholar]
  14. Zhou, Q. X. and Song, Y. F (2004). Remediation of Contaminated Soils: Principles and Methods, Beijing: Science Press. 489. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.