Open Access
E3S Web Conf.
Volume 7, 2016
3rd European Conference on Flood Risk Management (FLOODrisk 2016)
Article Number 05005
Number of page(s) 5
Section Physical, economic and environmental consequences
Published online 20 October 2016
  1. Merz B, Kreibich H, Thieken A and Schmidtke R. (2004). Estimation uncertainty of direct monetary flood damage to buildings. Nat Hazards Earth Syst Sci. 4(1),153–63. [Google Scholar]
  2. Wagenaar D. J., Bruijn K. M. de, Bouwer L. M. and de Moel H. (2016). Uncertainty in flood damage estimates and its potential effect on investment decisions. Natural Hazards and Earth System Sciences. 16(1),1–14. [CrossRef] [Google Scholar]
  3. Schröter K, Kreibich H, Vogel K, Riggelsen C, Scherbaum F and Merz B. (2014). How useful are complex flood damage models? Water Resour Res. 50(4),3378–95. [Google Scholar]
  4. Thieken A. H., Olschewski A, Kreibich H, Kobsch S and Merz B. (2008). Development and evaluation of FLEMOps - a new Flood Loss Estimation MOdel for the private sector. International Conference on Flood Recovery, Innovation and Response, London [Google Scholar]
  5. Elmer F, Thieken A. H., Pech I and Kreibich H. (2010). Influence of flood frequency on residential building losses. Nat Hazards Earth Syst Sci. 10(10),2145–59. [Google Scholar]
  6. Cammerer H, Thieken A. H. and Lammel J. (2013). Adaptability and transferability of flood loss functions in residential areas. Nat Hazards Earth Syst Sci. 13(11),3063–81. [Google Scholar]
  7. Thieken A. H., Müller M, Kreibich H and Merz B. (2005). Flood damage and influencing factors: New insights from the August 2002 flood in Germany. Water Resources Research. 41(12),1–16. [Google Scholar]
  8. Merz B, Kreibich H and Lall U. (2013). Multivariate flood damage assessment: a tree-based datamining approach. Nat Hazards Earth Syst Sci. 13(1),53–64. [Google Scholar]
  9. Breiman L. (2001) Random Forests. Machine Learning. 45(1), 5–32. [CrossRef] [Google Scholar]
  10. Martin A. D., Quinn K. M. and Park J. H. (2011). MCMCpack: Markov Chain Monte Carlo in R. Journal of Statistical Software. 42(9), 22. [CrossRef] [Google Scholar]
  11. Breiman L, Friedman J, Stone CJ and Olshen R. A. (1994). Classification and Regression Trees. New Ed. Taylor & Francis Ltd; 368 p. [Google Scholar]
  12. Breiman L. (1996). Bagging predictors. Machine Learning. 24(2), 123–40. [Google Scholar]
  13. Liaw A and Wiener M. (2002). Classification and Regression by randomForest. R News. 2(3), 18–22. [Google Scholar]
  14. Klemes V. (1986). Operational testing of hydrological simulation models. Hydrological Sciences Journal -Journal des Sciences Hydroliques. 31(1), 13–24. [Google Scholar]
  15. Gneiting T and Raftery A. E. (2007). Strictly Proper Scoring Rules, Prediction, and Estimation. Journal of the American Statistical Association. 102(477):359–78. [CrossRef] [Google Scholar]
  16. Thordarson F.Ö. , Breinholt A, Møller J. K., Mikkelsen P. S., Grum M and Madsen H. (2012). Evaluation of probabilistic flow predictions in sewer systems using grey box models and a skill score criterion. Stoch Environ Res Risk Assess. 26(8), 1151–62. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.