Open Access
E3S Web Conf.
Volume 7, 2016
3rd European Conference on Flood Risk Management (FLOODrisk 2016)
Article Number 10002
Number of page(s) 11
Section Hazard and risk mapping
Published online 20 October 2016
  1. Bertin X., Bruneau N., Breilh J.F., Fortunato A.B. and Karpytchev M. (2012). Importance of wave age and resonance in storm surges: The case Xynthia, Bay of Biscay, Ocean Modelling, 42, 16–30. [CrossRef] [Google Scholar]
  2. Silvestro F., Gabellani S., Giannoni F., Parodi A., Rebora N., Rudari R., and Siccardi F. (2012). A hydrological analysis of the 4 November 2011 event in Genoa. Nat. Hazards Earth Syst. Sci., 12, 2743–2752. [CrossRef] [Google Scholar]
  3. Lamb H. H. (1991). Historic Storms of the North Sea, British Isles and Northwest Europe, Cambridge University Press, 204 p. [Google Scholar]
  4. Trifonova E., Valchev N., Andreeva N. and Eftimova P. (2012). Critical storm thresholds for morphological changes in the western Black Sea coastal zone, Geomorphology, vol. 143-144, 81–94. [CrossRef] [Google Scholar]
  5. Arkhipkin V. S., Gippius F. N., Koltermann K. P., and Surkova G. V. (2014). Wind waves in the Black Sea: results of a hindcast study, Nat. Hazards Earth Syst. Sci., 14, 2883–2897. [CrossRef] [Google Scholar]
  6. Galabov V., Kortcheva A., Bogatchev A., and Tsenova B. (2015). Investigation of the hydrometeorological hazards along the Bulgarian coast of the Black Sea by reconstructions of historical storms. Journal of Environmental Protection and Ecology, 16 (3), 1005–1015. [Google Scholar]
  7. Valchev N., Trifonova E. and Andreeva N. (2012). Past and recent trends in the western Black Sea storminess, Nat. Hazards Earth Syst. Sci., vol. 12, 1–17, doi:10.5194/nhess-12-961-2012. [CrossRef] [Google Scholar]
  8. Akpınar A. and Kömürcü M.T. (2013). Assessment of wave energy resource of the Black Sea based on 15-year numerical hindcast data. Applied Energy, 101, 502–512. [CrossRef] [Google Scholar]
  9. Rusu L., Butunolu D. and Rusu E. (2014). Analysis of the Extreme Storm Events in the Black Sea Considering the Results of a Ten-year Wave Hindcast. Journal of Environmental Protection and Ecology, 15 (2), 445–454. [Google Scholar]
  10. Quevauviller P., Barceló D., Beniston M., Djordjevic S., Harding R. J., Iglesias A., Ludwig R., Navarra A., Ortega A. N., Mark O., Roson R., Sempere D., Stoffel M., van Lanen H. A. J. and Werneret M. (2012). Integration of research advances in modelling and monitoring in support of WFD river basin management planning in the context of climate change. Science of the Total Environment, 440, 167–177. [CrossRef] [Google Scholar]
  11. Collet I. and Engelbert A. (2013). Coastal regions: people living along the coastline, integration of NUTS 2010 and latest population grid, EUROSTAT. [Google Scholar]
  12. The EU Floods Directive 2007/60,; [Google Scholar]
  13. Van Dongeren A., Ciavola P., Viavattene C., De Kleermaeker S., Martinez G., Ferreira O., Costa C. and McCall R. (2014). RISC-KIT: Resilience-Increasing Strategies for Coasts – toolKIT. In: Green A.N. and Cooper J.A.G. (eds.), Proceedings 13th International Coastal Symposium (Durban, South Africa), Journal of Coastal Research, SI. 70, 366–371. [Google Scholar]
  14. Viavattene C., Jimenez J.A., Owen D., Priest S.J., Parker D.J., Micou P. and Ly S. (2015b). Coastal Risk Assessment Framework: Guidance Document, EU FP7 603458 research project RISC-KIT - Deliverable No: D.2.3, 155 p. [Google Scholar]
  15. Viavattene C., Micou P., Owen D., Priest S.J. and Parker D.J. (2015a). Library of Coastal Vulnerability Indicators: Guidance Document, EU FP7 603458 research project RISC-KIT - Deliverable No: D.2.2, 136 p. [Google Scholar]
  16. Gornitz V.M. (1990). Vulnerability of the East Coast. Journal of Coastal Research, SI. 9, pp. 201–237. [Google Scholar]
  17. McLaughlin S. and Cooper J.A.G. (2010). A multiscale coastal vulnerability index: A tool for coastal managers? Environmental Hazards, 9 (3), 233–248. [CrossRef] [Google Scholar]
  18. Balica S.F., Wright N.G. and van der Meulen F. (2012). A flood vulnerability index for coastal cities and its use in assessing climate change impacts, Natural Hazards, 64 (1), 73–105. [CrossRef] [Google Scholar]
  19. Clark G., Moser S., Ratick S., Dow K., Meyer W., Emani S., Jin W., Kasperson J., Kasperson R. and Schwartz H. (1998). Assessing the vulnerability of coastal communities to extreme storms: The case of Revere, MA, USA. Mitigation and Adaptation Strategies for Global Change, 3(1), 59–82. [CrossRef] [Google Scholar]
  20. Benassai G., Chirico F. and Corsini S. (2009). Una metodologia sperimentale per la definizione del rischio da inondazione costiera. Studi costieri, 16, 51–72. [Google Scholar]
  21. Fernández V., Gómez M. and Guigou B. (2013). Coastal vulnerability index to global change in Uruguay, Proceedings of 11th International Symposium for GIS and Computer Cartography for Coastal Zones Management, Victoria, British Columbia, Canada, 42–44. [Google Scholar]
  22. Appeaning Addo K. (2013). Assessing Coastal Vulnerability Index to Climate Change: the Case of Accra - Ghana, Proceedings 12th International Coastal Symposium (Plymouth, England), Journal of Coastal Research, SI. 65, 1892–1897. [Google Scholar]
  23. Valchev N., Andreeva N., Eftimova P. and Trifonova E. (2014). Prototype of early warning system for coastal storm hazard (Bulgarian Black Sea coast), Compt. Rend. Acad. Bulg. Sci., 67 (7), 971–978. [Google Scholar]
  24. Villatoro M., Silva R., Méndez F.J., Zanuttigh B., Pan S., Trifonova E., Losada I.J., Izaguirre C., Simmonds D., Reeve D.E., Mendoza E., Martinelli L., Formentin S.M., Galiatsatou P., and Eftimova P. (2014). An approach to assess flooding and erosion risk for open beaches in a changing climate. Coastal Engineering, Vol. 87, 50–76. [CrossRef] [Google Scholar]
  25. Stanchev H., Young R. and Stancheva M. (2013). Integrating GIS and high resolution orthophoto images for the development of a geomorphic shoreline classification and risk assessment - a case study of cliff/bluff erosion along the Bulgarian coast. Journal of Coastal Conservation, 17(4), 719–728. [CrossRef] [Google Scholar]
  26. Garrity N.J., Battalio R., Hawkes P.J. and Roupe D. (2006). Evaluation of the event and response approaches to estimate the 100‐year coastal flood for Pacific coast sheltered waters. Proceeding of the 30th ICCE, ASCE, 1651–1663. [Google Scholar]
  27. Valchev N., Davidan I., Belberov Z., Palazov A. and Valcheva N. (2012). Hindcasting and assessment of the western Black sea wind and wave climate, Journal of Environmental protection and ecology, 11(3), 1001–1012. [Google Scholar]
  28. Feser F., Weisse R., and von Storch H. (2001). Multidecadal atmospheric modelling for Europe yields multi-purpose data, EOS, 82 (28), 305–310. [CrossRef] [Google Scholar]
  29. Trifonova E., Valchev N. Andreeva N. and Eftimova P. (2012). Critical storm thresholds for morphological changes in the western Black Sea coastal zone, Geomorphology, vol. 143–144, 81–94. [CrossRef] [Google Scholar]
  30. Stockdon H.F., Holman R.A., Howd P.A. and Sallenger A.H. Jr. (2006). Empirical parameterization of setup, swash, and run-up, Coastal Engineering, 53(7), 573–588. [Google Scholar]
  31. Holman R. A. (1986) Extreme value statistics for wave run-up on a natural beach, Coastal Engineering, 9 (6), 527–544. [CrossRef] [Google Scholar]
  32. Nielsen P. and Hanslow D.J. (1991). Wave run-up distributions on natural beaches, Journal of Coastal Research, 7(4), 1139–1152. [Google Scholar]
  33. Pullen T., Allsop N.W.H., Bruce T., Kortenhaus A., Schüttrumpf H. and van der Meer J.W. (2007). EurOtop. Wave overtopping of sea defenses and related structures: Assessment manual, 193 p., [Google Scholar]
  34. Dimitrov D., Nyagolov I., Balabanova S., Lisev N., Koshinchanov G., Korcheva A., Marinski Y., Pashova L., Grozdev D., Vasilev V., Bozhilov and N. Tsvetkova (2013). Methods for assessment of flood hazard and flood risk, according to requirements of the EU Floods Directive 2007/60: Final Report, Black Sea Basin Directorate, Contract No D-30-62, 357 p. (In Bulgarian). [Google Scholar]
  35. Orton P., Vinogradov S., Blumberg A. and Georgas N. (2014). Hydrodynamic mapping of future coastal flood hazards for New York City, Revised final project report, Stevens Institute of Technology, 36 p. [Google Scholar]
  36. Donnelly C. (2008). Coastal Overwash: Processes and Modelling. Ph.D. Thesis, University of Lund, 53 p. [Google Scholar]
  37. Plomaritis T.A., Costas S. and Ferreira O. (2015). Overwash hazards assessment using a simplified process based approach, Geo-temas, 15, 129–132. [Google Scholar]
  38. Law on spatial planning (2015). Official Gazette, 65. [Google Scholar]
  39. Flanagan B., Gregory E., Hallisey E., Heitgerd J. and Lewis B. (2011). A social vulnerability index for disaster management, Journal of homeland security and emergency management, 8 (1), Article 3. [CrossRef] [Google Scholar]
  40. Tapsell S.M., Penning-Rowsell E.C., Tunstall S.M. and Wilson T. (2002). Vulnerability to flooding: health and social dimensions. Phil. Trans. R. Soc. Lond., 360 (1796), 1511–1525. [Google Scholar]
  41. Nikolova D., Tsvetkov A., Ganev P., Aleksiev Y. and Slavova Z. (2014). Regional profiles –indicators of development, Report on the project “Regional Profiles: Indicators of Development” financed by the America for Bulgaria Foundation”, 170 p. [Google Scholar]
  42. Ordinance No 2 for planning and design of transport and communication systems in urbanized territories (2204). Official Gazette, 86. [Google Scholar]
  43. Slocum T. A. (1999). Thematic cartography and Visualization. Upper Saddle River: Prentice Hall Inc. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.