Open Access
Issue
E3S Web Conf.
Volume 17, 2017
9th Conference on Interdisciplinary Problems in Environmental Protection and Engineering EKO-DOK 2017
Article Number 00089
Number of page(s) 8
DOI https://doi.org/10.1051/e3sconf/20171700089
Published online 24 May 2017
  1. J. Łomotowski, A. Szpindor, Nowoczesne systemy oczyszczania ścieków (2002) [Google Scholar]
  2. A.M.P. Martins, K.R. Pagilla, J.J. Heijnen, M.C.M. Van Loosdrecht, Bulking filamentous sludge - a critical review, Wat. Res. 38, 793 (2004) [CrossRef] [Google Scholar]
  3. Z. Dymaczewski, J.A. Oleszkiewicz, M. M. Sozański, Poradnik eksploatatora oczyszczalni ścieków. Wydanie II (1997) [Google Scholar]
  4. I. Lou, Y. Zhao, Sludge Bulking Prediction Using Principle Component Regression and Artificial Neural Network, Math Probl Eng 2012, 1 (2012) [CrossRef] [Google Scholar]
  5. B. Szeląg, J. Gawdzik, Application of Selected Methods of Artificial Intelligence to Activated Sludge Settleability Predictions, Pol J Environ Stud 25, 1709 (2016) [CrossRef] [Google Scholar]
  6. F. Li, J. Qiao J., Y. Han, C. Yang, A self - organizing cascade neural network with random weights for nonlinear system modeling, Appl Soft Comput 42, 184 (2016) [CrossRef] [Google Scholar]
  7. J. Bayo, J.M. Angosto, J. M, J. Serrano-Aniorte, Evaluation of physicochemical parameters influencing bulking episodes in a municipal wastewater treatment plant. Water Pollution VIII: Modelling, Monitoring and Management, 531 (2006) [CrossRef] [Google Scholar]
  8. E. Bezak-Mazur, R. Stoińska, B. Szeląg, Ocena wpływu parametrów operacyjnych i występowania bakterii nitkowatych na objętościowy indeks osadu czynnego – studium przypadku, Rocznik Ochrona Środowiska 18, 487 (2016) [Google Scholar]
  9. L. Belanche, J. Valdes, J. Comas, I. Roda, M. Poch, Prediction of the bulking phenomenon in wastewater treatment plants, Artificial Intelligence in Engineering 14, 307 (2000) [CrossRef] [Google Scholar]
  10. J. Łomotowski, M. Dańczuk, Application of the microwave energy to the hygienization of sewage sludge, EPE J 36, 77 (2010) [Google Scholar]
  11. T. Heyer, J. Stamm, Levee reliability analysis using logistic regression models – abilities, limitations and practical considerations, Georisk Assessment and Management of Risk for Engineered Systems and Geohazards 7, 77 (2013) [CrossRef] [Google Scholar]
  12. D.H. Tran, A.W.M. Ng, B.J.C. Perera, S. Burn, P. Davis, Application of probabilistic neural networks in modelling structural deterioration of stormwater pipes, Urban Water J 3, 175 (2006) [CrossRef] [Google Scholar]
  13. A.M. Ramos-Cañón, L.F. Prada-Sarmiento, M.G. Trujillo-Vela, J.P. Macías, A.C. Santos-R, Linear discriminant analysis to describe the relationship between rainfall and landslides in Bogotá, Colombia, Landslides 13, 671 (2016) [CrossRef] [Google Scholar]
  14. E. Gatnar, Podejście wielomodelowe w zagadnieniach dyskryminacji i regresji (2012) [Google Scholar]
  15. F. Harrell, Regression Modeling Strategies with Application to Linear Models, Logistic Regression, and Survival Analysis (2001) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.