Open Access
Issue
E3S Web Conf.
Volume 32, 2018
EENVIRO 2017 Workshop - Advances in Heat and Transfer in Built Environment
Article Number 01013
Number of page(s) 7
DOI https://doi.org/10.1051/e3sconf/20183201013
Published online 21 February 2018
  1. Narayanan, V., J. Seyed-Yagoobi, and R.H. Page, An experimental study of fluid mechanics and heat transfer in an impinging slot jet flow. International Journal of Heat and Mass Transfer, 2004. 47: p. 1827–1845. [CrossRef] [Google Scholar]
  2. Baydar, E. and Y. Ozmen, An experimental and numerical investigation on a confined impinging air jet at high Reynolds numbers. Applied Thermal Engineering, 2005. 25: p. 409–421. [CrossRef] [Google Scholar]
  3. Han, B. and R.J. Goldstein, Jet-impingement heat transfer in gas turbine systems, in Annals of the New York Academy of Sciences. 2001. p. 147-161. [Google Scholar]
  4. Polat, S., Heat and mass transfer in impingement drying. Drying Technology, 1993. 11(6): p. 1147-1176. [CrossRef] [Google Scholar]
  5. Viskanta, R., Heat transfer to impinging isothermal gas and flame jets. Experimental Thermal and Fluid Science, 1993. 6(2): p. 111-134. [CrossRef] [Google Scholar]
  6. Gardon, R. and J.C. Akfirat, Heat transfer characteristics of impinging two-dimensional air jets. J. Heat Transfer, 1966. 88: p. 101-108. [CrossRef] [Google Scholar]
  7. Gardon, R. and J. Cobonpue, 1962: p. 454-460. [Google Scholar]
  8. Sarkar, A., et al., Fluid flow and heat transfer in air jet impingement in food processing. Journal of Food Science, 2004. 69(4): p. CRH113-CRH122. [Google Scholar]
  9. Fabbri, M., S. Jiang, and V.K. Dhir, A comparative study of cooling of high power density electronics using sprays and microjets. Journal of Heat Transfer, 2005. 127(1): p. 38-48. [CrossRef] [Google Scholar]
  10. Anwarullah, M., V.V. Rao, and K.V. Sharma, Experimental investigation for enhancement of heat transfer from cooling of electronic components by circular air jet impingement. Heat and Mass Transfer, 2012. 48(9): p. 1627-1635. [CrossRef] [Google Scholar]
  11. Martin, H., Heat and Mass Transfer between Impinging Gas Jets and Solid Surfaces, in Advances in Heat Transfer. 1977. p. 1-60. [Google Scholar]
  12. Carlomagno, G.M. and A. Ianiro, Thermo-fluid-dynamics of submerged jets impinging at short nozzle-to-plate distance: A review. Experimental Thermal and Fluid Science, 2014. 58( ): p. 15-35. [CrossRef] [Google Scholar]
  13. Hall, J.W. and D. Ewing, On the dynamics of the large-scale structures in round impinging jets. Journal of Fluid Mechanics, 2006. 555: p. 439-458. [CrossRef] [Google Scholar]
  14. Harmand, S., et al., Review of fluid flow and convective heat transfer within rotating disk cavities with impinging jet. International Journal of Thermal Sciences, 2013. 67: p. 1-30. [CrossRef] [Google Scholar]
  15. Polat, S., et al., Numerical flow and heat transfer under impinging jets: A review. Annual Review of Numerical Fluid Mechanics and Heat Transfer, 1989. 2: p. 157-197. [CrossRef] [Google Scholar]
  16. Kristiawan, M., et al., Wall shear rates and mass transfer in impinging jets: Comparison of circular convergent and cross-shaped orifice nozzles. International Journal of Heat and Mass Transfer, 2012. 55(1-3): p. 282-293. [CrossRef] [Google Scholar]
  17. Meslem, A., et al., Flow dynamics and mass transfer in impinging circular jet at low Reynolds number. Comparison of convergent and orifice nozzles. International Journal of Heat and Mass Transfer, 2013. 67: p. 25-45. [Google Scholar]
  18. Abramovich, G.N., The theory of turbulent jets. 1963, Cambridge, Massachusets: MIT Press. 668. [Google Scholar]
  19. Rajaratnam, N., Turbulent jets. 1976, Amsterdam, Netherlands: Elsevier Scientific Publishing Company. [Google Scholar]
  20. Martin, H., Heat and mass transfer between impinging gas jets and solid surfaces. Advances Heat Transfer, 1977. 13: p. 1-60. [Google Scholar]
  21. Jambunathan, K., et al., A review of heat transfer data for single circular jet impingement. International Journal of Heat and Fluid Flow, 1992. 13: p. 106-115. [Google Scholar]
  22. Carlomagno, G.M. and A. Ianiro, Thermo-fluid-dynamics of submerged jets impinging at short nozzle-to-plate distance: A review. Experimental Thermal and Fluid Science, 2014. 58(Supplement C): p. 15-35. [CrossRef] [Google Scholar]
  23. Awbi, H.B., Ventilation of Buildings. 1991, London, U.K.: E&FN SPON. 313. [Google Scholar]
  24. ASHRAE, ASHRAE Handbook Fundamentals. 1993, Atlanta: American Society of Heating, Refrigerating and Air Conditioning Engineering. Chap. 31. [Google Scholar]
  25. Tuve, G.L., Air velocities in ventilating jets, ASHVE Research Report No.1476, in ASHVE Transactions, 58. 1953. p. 261-283. [Google Scholar]
  26. Oosthuisen, P.H. An experimental study of low Reynolds number turbulent circular jet flow. in ASME Applied Mechanics, Bioengineering and Fluids Engineering Conference,. 1983. Houston, U.S.A. [Google Scholar]
  27. Rajaratnam, N. and B.S. Pani. Turbulent compound annular shear layers. in Proceedings ASCE, J. Hydraulics Division. 1972. [Google Scholar]
  28. Davies, P.A.O.L., M. Fischer, and M.J. Barrat, The caracteristics of the turbulence in the mixing region of a round jet. Journal of Fluid Mechanics, 1963. 15: p. 337-367. [CrossRef] [Google Scholar]
  29. Chaudhari, M., B. Puranik, and A. Agrawal, Effect of orifice shape in synthetic jet based impingement cooling. Experimental Thermal and Fluid Science, 2010. 34(2): p. 246-256. [CrossRef] [Google Scholar]
  30. Garimella, S.V. and B. Nenaydykh, Nozzle-geometry effects in liquid jet impingement heat transfer. International Journal of Heat and Mass Transfer, 1996. 39(14): p. 2915-2923. [CrossRef] [Google Scholar]
  31. Pan, Y., J. Stevens, and B.W. Webb, Effect of nozzle configuration on transport in the stagnation zone of axisymmetric, impinging free-surface liquid jets. Part 2. Local heat transfer. Journal of Heat Transfer, 1992. 114(4): p. 880-886. [Google Scholar]
  32. Brignoni, L.A. and S.V. Garimella, Effects of nozzle-inlet chamfering on pressure drop and heat transfer in confined air jet impingement. International Journal of Heat and Mass Transfer, 2000. 43(7): p. 1133-1139. [CrossRef] [Google Scholar]
  33. Lee, J. and S.J. Lee, The effect of nozzle aspect ratio on stagnation region heat transfer characteristics of elliptic impinging jet. International Journal of Heat and Mass Transfer, 2000. 43(4): p. 555-575. [CrossRef] [Google Scholar]
  34. Gao, N., H. Sun, and D. Ewing, Heat transfer to impinging round jets with triangular tabs. International Journal of Heat and Mass Transfer, 2003. 46(14): p. 2557-2569. [CrossRef] [Google Scholar]
  35. Bode, F., A. Meslem, and C. Croitoru, Numerical simulation of a very low Reynolds cross-shaped jet. Mechanics, 2013. 19(5): p. 512-517. [CrossRef] [Google Scholar]
  36. Hansen, L.G. and B.W. Webb, Air jet impingement heat transfer from modified surfaces. International Journal of Heat and Mass Transfer, 1993. 36 p. 989-997. [CrossRef] [Google Scholar]
  37. Chakroun, W.M., A.A. Abdel-Rahman, and S.F. Al-Fahed, Heat transfer augmentation for air jet impinged on a rough surface. Applied Thermal Engineering, 1998. 18(12): p. 1225-1241. [CrossRef] [Google Scholar]
  38. Ekkad, S.V. and D. Kontrovitz, Jet impingement heat transfer on dimpled target surfaces. International Journal of Heat and Fluid Flow, 2002. 23(1): p. 22-28. [CrossRef] [Google Scholar]
  39. Gau, C. and C.C. Lee, Impingement cooling flow structure and heat transfer along rib-roughened walls. International Journal of Heat and Mass Transfer, 1992. 35(11): p. 3009-3020. [CrossRef] [Google Scholar]
  40. Gau, C. and I.C. Lee, Flow and impingement cooling heat transfer along triangular rib-roughened walls. International Journal of Heat and Mass Transfer, 2000. 43(24): p. 4405-4418. [CrossRef] [Google Scholar]
  41. Nakod, P.M., S.V. Prabhu, and R.P. Vedula, Heat transfer augmentation between impinging circular air jet and flat plate using finned surfaces and vortex generators. Experimental Thermal and Fluid Science, 2008. 32(5): p. 1168-1187. [CrossRef] [Google Scholar]
  42. Zaman, K.B.M.Q. and A.K.M.F.Hussain, Vortex pairing in a circular jet under controlled excitation. Part 1. General response. Journal of Fluid Mechanics, 1980. 101(3). [Google Scholar]
  43. Hussain, F. and H.S. Husain, Elliptic jets. Part1. Characteristics of unexcited and excited jets. Journal of Fluid Mechanics, 1989. 208: p. 257-320. [Google Scholar]
  44. Zaman, K.B.M.Q., Axis switching and spreading of an asymmetric jet: the role of coherent structure dynamics. Journal of Fluid Mechanics, 1996. 316(1): p. 1-27. [CrossRef] [Google Scholar]
  45. Lai, J.C.S., Turbulence suppression in an elliptic jet. International Journal of Heat and Fluid Flow, 1992. 13(1). [Google Scholar]
  46. Lin, Y.T., et al., Investigation on the mass entrainement of an acoustically controlled elliptic jet. International Communications in Heat and Mass Transfer, 1998. 25(3). [Google Scholar]
  47. Wiltse, J.M. and A. Glezer, Manipulation of free shear flows using piezoelectric actuators. Journal of Fluid Mechanics, 1993. 249(261-285). [CrossRef] [Google Scholar]
  48. Parekh, D.E., et al., Innovative jet flow control : Mixing enhancement experiments. AIAA Paper 96-0808, 1996. [Google Scholar]
  49. Suzuki, H., N. Kasagi, and Y. Suzuki, Active control of an axisymmetric jet with distributed electromagnetic flaps actuators. Experiments in Fluids, 2004. 36(498-509): p. 1-43. [CrossRef] [Google Scholar]
  50. Davis, M.R., Variable control of jet decay. AIAA Journal, 1982. 20(5). [Google Scholar]
  51. Denis, S., Contrôle du developpement des couches de mélange axisymétriques subsoniques par jets impactant. 2000, Université de Poitiers. p. 280. [Google Scholar]
  52. Collin, E., Etude de l’injection radiale de fluide dans une couche de mélange annulaire supersonique. 2001, Université de Poitiers. p. 282. [Google Scholar]
  53. Liu, T. and J.P. Sullivan, Heat transfer and flow structures in an excited circular impinging jet. International Journal of Heat and Mass Transfer, 1996. 39(17): p. 3695-3706. [CrossRef] [Google Scholar]
  54. Chin, D.T. and C.H. Tsang, Mass transfer to an impinging jet electrode. Journal of the Electrochemical Society, 1978. [Google Scholar]
  55. Yapici, S., et al., Surface shear stress for a submerged jet impingement using electrochemical technique. Journal of Applied Electrochemistry, 1999. 29: p. 185-190. [CrossRef] [Google Scholar]
  56. Alekseenko, S.V. and D.M. Markovich, Electrodiffusion diagnostics of wall shear stresses in impinging jet. Journal of Applied Electrochemistry, 1994. 24: p. 626-631. [CrossRef] [Google Scholar]
  57. Baleras, F., et al., A three-segement electrodiffusion probe in axisymmetric flow with stagnation and separation. Journal of Applied Electrochemistry, 1994. 24: p. 676-684. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.