Open Access
E3S Web Conf.
Volume 32, 2018
EENVIRO 2017 Workshop - Advances in Heat and Transfer in Built Environment
Article Number 01020
Number of page(s) 6
Published online 21 February 2018
  1. Vasan N., Stathopoulos T., Wind Tunnel Assessment of the Wind Velocity Distribution on Vertical Façades, Proceedings of eSim, 2012, pp. 61-74. [Google Scholar]
  2. Quirouette R., Arch B., La pression d’air et l’envelope du batiment, Ontario Association of Architects, 2004. [Google Scholar]
  3. Axinte E., Teleman E. C., Băetu G., Pescaru R. A., Silion R., Studies for preventing the impact of climate changes upon built environment, The Bulletin of the Polytechnic Institute of Jassy, C-A Section, Tome: LXI (LXV), 2015, pp. 61-74. [Google Scholar]
  4. Flamand O., Action du vent sur les ouvrages - Effets dynamiques, Universite de Nantes. [Google Scholar]
  5. Axinte E., Pescaru R. A., Studiul acţiunii vântului în tunel aerodinamic, Editura Cermi, Iaşi, Romania, 2000. [Google Scholar]
  6. Loua W., Huang M., Zhang M., Lin N., Experimental and zonal modeling for wind pressures on double-skin facades of a tall building, Energy and Buildings, Vol. 54, 2012, pp.179-191. [CrossRef] [Google Scholar]
  7. Kawai H., Nishimura H., Suzuki M., Oura Y., Field Measurement of Wind Pressure on a Double Skin with a Ventilator, EACWE 5 Florence, 12 pages, 2009. [Google Scholar]
  8. Silva F.M., Gomes M.G., Rodrigues A.M., Measuring and estimating airflow in naturally ventilated double skin facades, Building and Environment, Vol. 87, 2015, pp. 292-301. [CrossRef] [Google Scholar]
  9. Tominaga Y., Blocken B., Wind tunnel experiments on cross-ventilation flow of a generic building with contaminant dispersion in unsheltered and sheltered conditions, Building and Environment, Vol. 92, 2015, pp. 452-461. [CrossRef] [Google Scholar]
  10. Barbosa S., Ip K., Perspectives of double skin façades for naturally ventilated buildings: A review, Renewable and Sustainable Energy Reviews, Vol. 40, 2014, pp. 1019-1029. [CrossRef] [Google Scholar]
  11. Agathokleous R.A., Kalogirou S.A., Double skin facades (DSF) and building integrated photovoltaics (BIPV): A review of configurations and heat transfer characteristics, Renewable Energy Vol. 89, 2016, pp. 743-756. [CrossRef] [Google Scholar]
  12. Sacht H., Bragança L., Almeida M., Caram R., Different module placements in a modular façade system for natural ventilation, Economics and Finance, Vol. 21, 2015, pp. 366-373. [Google Scholar]
  13. Gaillard L., Ruedin, G. Giroux, Plantevit M., Kaytoue M., Saadon S., Ménézo C., Boulicaut J.-F., Data-driven performance evaluation of ventilated photovoltaic double-skin facades in the built environment, Energy Procedia, Vol. 78, 2015, pp 447-452. [CrossRef] [Google Scholar]
  14. Hudişteanu S.V., Popovici C.G., Mateescu T.D., Cherecheş N.-C., Efficiency analysis of BIPV systems for different locations in Romania, Energy Procedia, Vol. 112, 2017, pp. 404 – 411. [CrossRef] [Google Scholar]
  15. Neff D.E., Meroney N.R., Reynolds number independence of the wind tunnel simulation of transport and dispersion about buildings, Colorado State University, 20 pages, 1996. [Google Scholar]
  16. Sacht H., Bragança L., Almeida M., Caram R., Study of natural ventilation in wind tunnels and influence of the position of ventilation modules and types of grids on a modular façade system, Energy Procedia 96 (2016) 953 – 964. [CrossRef] [Google Scholar]
  17. Popovici C.-G, Hudiştean., S. V., Mateescu T. D., Cherecheş N.-C., (2016), Efficiency improvement of PV panels by using air cooled heat sinks, Energy Procedia, 85, 425-432. [CrossRef] [Google Scholar]
  18. Popovici C.-G., Cirlan V.V., Mateescu T.D., Chereches N.-C., Hudisteanu S.V., Influence of various angles of the venetian blind on the efficiency of a double skin façade, Energy Procedia 85 (2016) 416 – 424. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.