Open Access
Issue
E3S Web Conf.
Volume 58, 2018
Rudenko International Conference “Methodological problems in reliability study of large energy systems” (RSES 2018)
Article Number 03015
Number of page(s) 5
Section Energy Security, Reliability and Quality of Energy Consumption, Modeling and Information Technology
DOI https://doi.org/10.1051/e3sconf/20185803015
Published online 10 October 2018
  1. Rakhmanov R.N., .Mamedyarov O.S., Bayramaliyeva E. M..Identification of distortion of electrical network parameters with nonlinear loads. Collection of reports of International conference. Identification and control problems. IPU, M. (2002) [Google Scholar]
  2. R.N. Rahmanov, I. Z. Islamov. Evaluation of the harmonic voltage distortion and its influence on power network insulation age. in Trans. of CIGRE conference on Power system insulation coordination, Abu-Dhabi, 298–302 (1998) [Google Scholar]
  3. Zhezhelenko I. V., Korotkevich M. A. Electromagnetic compatibility in electrical networks. Minsk: Vysheyshaya school, 197 (2012) [Google Scholar]
  4. Van den Keybus J. Simulation of large numbers of non-linear loads in distribution systems / J. Van den Keybus et al., in IEEE Ninth Int.Conf.on Harmonics and Quality of Power, 2, (2000). [Google Scholar]
  5. Rakhmanov R. N.. Application of the neural network model to control the mode of electric power DSP // Energy problems., No.1, 47–51 (2005) [Google Scholar]
  6. Kovernikova L. I. Active powers of harmonics in the nodes of connection of nonlinear loads to the high voltage network / / Electricity, №3, 12–20 (2017) [Google Scholar]
  7. Manuel L. Modelling harmonics drawn by nonlinear loads / L. Manuel, B. Josep, M. Juan, C. Montserrat and G. Eulalia, in 2015 9th International Conference on Compatibility and Power Electronics (CPE), Costa da Caparica, 93–97 (2015) [Google Scholar]
  8. Sainz, L. Harmonic Interaction Influence Due to Current Source Shunt Filters in Networks Supplying Nonlinear Loads / L. Sainz, J. Balcells // IEEE Transactions on Power Delivery,27, No.3, 1385–1393 (2012) [CrossRef] [Google Scholar]
  9. Schipman, K. Harmonic amplification demystified [Electronic resource] / K. Schipman. ABB United Kingdom, (2011) – available from: http://www04.abb.com/global/seitp/seitp202.nsf/0/dba3255853945cfdc125783800573521?opendocument [Google Scholar]
  10. Mazumdar J. RecurrentNeural Networks Trained With Backpropagation Through Time Algorithm to Estimate Nonlinear Load Harmonic Currents / J. Mazumdar and R. G. Harley // IEEE Transactions on Electronics, 55, No.9, 3484–3491 (2018) [CrossRef] [Google Scholar]
  11. Huang G.-B. Extreme Learning Machine for Regression and Multiclass Classification / G.-B. Huang et al. // IEEE Transactions on Systems, Man, and Cybernetics, Part B, 42, No.2, 513–529 (2011) [Google Scholar]
  12. Segal, M. Multivariate random forests / M. Segal, and X. Yuanyuan // Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,1, No.1, 80–87 (2011) [CrossRef] [Google Scholar]
  13. Electric energy. Electromagnetic compatibility of technical means. Standards of quality of electric energy in power supply systems of general purpose. GOST 32144-2013-M.: Standardinform, 18 (2014) [Google Scholar]
  14. Rakhmanov N. R., Kurbatsky V. G., Guliyev G. B., Tomin N. B. Short-term forecasting of power output of wind power plants to ensure the reliability of electrical networks / The 87-th Int. scientific seminar “Methodological issues of research of reliability of large energy systems”, Minsk, Belarus, (2015) [Google Scholar]
  15. Kopylov I. P. Definition of the dynamic energy indices at non-sinusoidal asymmetric voltage / I. P. Kopylov // Energetika, No.2, 31–38 (2001) [Google Scholar]
  16. Farkhadzadeh E.M., Guliyev H.B. Bases of the Theory of Distortion in Electrical Circuits with Nonlinear Rower // Physics, №2, 29–33 (2003) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.