Open Access
E3S Web Conf.
Volume 67, 2018
The 3rd International Tropical Renewable Energy Conference “Sustainable Development of Tropical Renewable Energy” (i-TREC 2018)
Article Number 03057
Number of page(s) 7
Section Multifunctional and Advanced Materials
Published online 26 November 2018
  1. Suresh, S., et al. “Synthesis of Al2O3-Cu/water hybrid nanofluids using two-step method and its thermo physical properties.” Colloids and Surfaces A: Physicochemical and Engineering Aspects 388(1-3): 41–48 (2011). [CrossRef] [Google Scholar]
  2. Wang, X.-Q. and A. S. Mujumdar. “Heat transfer characteristics of nanofluids: a review.” International journal of thermal sciences 46(1): 1–19 (2007). [Google Scholar]
  3. Minea, A. A. “Hybrid nanofluids based on Al2O3, TiO2, and SiO2: numerical evaluation of different approaches.” International Journal of Heat and Mass Transfer 104: 852–860 (2017). [CrossRef] [Google Scholar]
  4. Selim Ahlatli, Thierry Mare, Patrice Estelle, Nimet Doner. “Thermal Performance Of Carbon Nanotube Nanofluids In Solar Microchannel Collectors: An Experimental Study”. International Journal of Technology 2: 219–226 (2016) [CrossRef] [Google Scholar]
  5. Sarkar, J., et al. “A review on hybrid nanofluids:recent research, development, and applications.” Renewable and Sustainable Energy Reviews 43:164–177 (2015). [CrossRef] [Google Scholar]
  6. Hatwar, A. S. and V. Kriplani. “A review on heat transfer enhancement with nanofluid.” Int. J. Adv. Res. Sci. Eng 3(3): 175–183 (2014). [Google Scholar]
  7. Nandy Putra, Wayan Nata Septiadi, Gerry Julian, Ary Maulana, Ridho Irwansyah. “An Experimental Study On Thermal Performance Of Nano Fluids In Microchannel Heat Exchanger”. International Journal of Technology 2: 167–177 (2013). [CrossRef] [Google Scholar]
  8. Nandy Putra Wilfried Roetzel, Sarit K. Das. Natural convection of nano-fluids. Heat and Mass Transfer. pp 775–784 (2003) [Google Scholar]
  9. Kouloulias, K., et al. “Sedimentation in nanofluids during a natural convection experiment.” International Journal of Heat and Mass Transfer 101: 1193–1203 (2016). [CrossRef] [Google Scholar]
  10. Khaleduzzaman, S., et al. “Stability of Al2O3-water Nanofluid for Electronics Cooling System.” Procedia engineering 105: 406–411 (2015). [CrossRef] [Google Scholar]
  11. Babu, J. R., et al. “State-of-art review on hybrid nanofluids.” Renewable and Sustainable Energy Reviews 77: 551–565 (2017). [Google Scholar]
  12. Ilyas, S. U., et al. “Stability and agglomeration of alumina nanoparticles in ethanol-water mixtures.” Procedia Engineering 148: 290–297 (2016). [CrossRef] [Google Scholar]
  13. Sidik, N. A. C., et al. “Recent progress on hybrid nanofluids in heat transfer applications: a comprehensive review.” International Communications in Heat and Mass Transfer 78: 68–79 (2016). [CrossRef] [Google Scholar]
  14. Nandy Putra, Erwin Prawiro, Muhammad Amin. “Thermal Properties Of Beeswax/Cuo Nano Phase-Change Material Used For Thermal Energy Storage”. International Journal of Technology 2:244–253 (2016). [CrossRef] [Google Scholar]
  15. Devendiran, D. K. and V. A. Amirtham. “A review on preparation, characterization, properties and applications of nanofluids.” Renewable and Sustainable Energy Reviews 60: 21–40 (2016). [CrossRef] [Google Scholar]
  16. Esfe, M. H., et al. “Study on thermal conductivity of water-based nanofluids with hybrid suspensions of CNTs/Al2O3 nanoparticles.” Journal of Thermal Analysis and Calorimetry 124(1): 455–460 (2016). [CrossRef] [Google Scholar]
  17. Akilu, S., et al. “Experimental measurements of thermal conductivity and viscosity of ethylene glycol-based hybrid nanofluid with TiO2-CuO/C inclusions.” Journal of Molecular Liquids 246: 396–405 (2017). [CrossRef] [Google Scholar]
  18. Charab, A. A., et al. “Thermal conductivity of Al2O3+ TiO2/water nanofluid: Model development and experimental validation.” Applied Thermal Engineering 119: 42–51(2017). [CrossRef] [Google Scholar]
  19. Leong, K., et al. “Synthesis and thermal conductivity characteristic of hybrid nanofluids-a review.” Renewable and Sustainable Energy Reviews 75: 868–878 (2017). [CrossRef] [Google Scholar]
  20. Azwadi, C. N., et al. “Preparation methods and thermal performance of hybrid nanofluids.” J. Adv. Rev. Sci. Res. 24(1): 13–23 (2016). [Google Scholar]
  21. Yu, W. and H. Xie “A review on nanofluids:preparation, stability mechanisms, and applications.” Journal of nanomaterials 2012: 1 (2012). [Google Scholar]
  22. Esfe, M. H., et al. “Thermal conductivity of Cu/TiO2-water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation.” International Communications in Heat and Mass Transfer 66: 100–104 (2015). [CrossRef] [Google Scholar]
  23. Geankoplis, C. J. Transport processes and separation process principles:(includes unit operations), Prentice Hall Professional Technical Reference. (2003). [Google Scholar]
  24. Chinnam, J., et al. “Measurements of the contact angle of nanofluids and development of a new correlation.“International Communications in Heat and Mass Transfer 62: 1–12 (2015). [CrossRef] [Google Scholar]
  25. Chaudhuri, R. G. and S. Paria. “The wettability of PTFE and glass surfaces by nanofluids.” Journal of colloid and interface science 434: 141–151 (2014). [CrossRef] [PubMed] [Google Scholar]
  26. Kim, S., et al. “Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids.” Applied Physics Letters 89(15): 153107 (2006). [CrossRef] [Google Scholar]
  27. Bhuiyan, M., et al. “Effect of nanoparticles concentration and their sizes on surface tension of nanofluids.” Procedia Engineering 105: 431–437 (2015). [CrossRef] [Google Scholar]
  28. Tanvir, S. and L. Qiao “Surface tension of nanofluid-type fuels containing suspended nanomaterials.” Nanoscale research letters 7(1):226 (2012). [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.