Open Access
E3S Web Conf.
Volume 72, 2018
2018 The International Conference on Electrical Engineering and Green Energy (CEEGE 2018)
Article Number 01008
Number of page(s) 6
Section Power Electronics Technology and Electrical Engineering
Published online 05 December 2018
  1. B. Boukhezzar, L. Lupu, H. Siguerdidjane, et al. Multivariable control strategy for variable speed, variable pitch wind turbines. Renewable Energy, 32(8):1273-1287 (2007). [CrossRef] [Google Scholar]
  2. A. Mechter, K. Kemih, M. Ghanes. Backstepping control of a wind turbine for low wind speeds. Nonlinear Dynamics, 84(4):2435-2445 (2016). [Google Scholar]
  3. A. Bektache, B. Boukhezzar. Nonlinear predictive control of a DFIG-based wind turbine for power capture optimization. Int. J. Elec. Power, 101:92-102 (2018). [CrossRef] [Google Scholar]
  4. S. M. R. Kazmi, H. Goto, H. J. Guo, et al. A Novel Algorithm for Fast and Efficient Speed-Sensorless Maximum Power Point Tracking in Wind Energy Conversion Systems. IEEE T. Ind. Electron, 58(1):29-36 (2010). [CrossRef] [Google Scholar]
  5. D. C. Phan, S. Yamamoto. Rotor speed control of doubly fed induction generator wind turbines using adaptive maximum power point tracking. Eng., 111:377-388 (2016). [Google Scholar]
  6. M. M. Hand, M. J. Balas. Non-Linear and Linear Model Based Controller Design for Variable-Speed Wind Turbines. (New York American Society of Mechanical Engineers, 1999) [CrossRef] [Google Scholar]
  7. X. Yao, C. Guo, Z. Xing, et al. Pitch regulated LQG controller design for variable speed wind turbine. International Conference on Mechatronics and Automation, 845-849 (2009). [Google Scholar]
  8. X. Wang, S. Hou, S. Wang, et al. Multi-objective optimization torque control of wind turbine based on LQG optimal control. Chinese Control and Decision Conference, 405-408 (2013). [Google Scholar]
  9. Y. M. Liu, E. Y. Yi, X. D. Wang, et al. Research on Capture the Maximum Wind Energy Base on Fuzzy PID Controller. App. Mech. & Materials, 268-270:1422-1425 (2013). [CrossRef] [Google Scholar]
  10. C. Xiao, L. Zhang, J. Yan. Fuzzy PID Controller for Wind Turbines. The Second International Conference on Intelligent Networks and Intelligent Systems.74-77 (2009). [Google Scholar]
  11. K. Ro, H. H. Choi. Application of neural network controller for maximum power extraction of a grid-connected wind turbine system. Elec. Eng., 88(1):45-53 (2005). [CrossRef] [Google Scholar]
  12. T. Diveux, P. Sebastian, D. Bernard, et al. Horizontal axis wind turbine systems: optimization using genetic algorithms. Wind Energy, 4(4):151–171 (2001). [CrossRef] [Google Scholar]
  13. B. Boukhezzar, H. Siguerdidjane. Nonlinear Control of a Variable-Speed Wind Turbine Using a Two-Mass Model. IEEE T. Energy Conver., 26(1):149-162 (2011). [CrossRef] [Google Scholar]
  14. X. Liu, X. Kong. Nonlinear Model Predictive Control for DFIG-Based Wind Power Generation. IEEE T. Auto. Sci. Eng., 11(4):1046-1055 (2014). [CrossRef] [Google Scholar]
  15. Y. Zhang, D. S. Naidu, C. X. Cai, and Y. Zou, Singular perturbation and Time Scales in Control Theories and Applications: An Overview 2002-2012, Inter. J. Infor. & Sys. Sci., 9: 1-36 (2014). [Google Scholar]
  16. D. S. Naidu, Singular Perturbation Methodology in Control Systems (Peter Peregrinus Ltd., 1988). [CrossRef] [Google Scholar]
  17. K. Xu. Singular Perturbation in the Control Systems (Science China Press, 1986). [Google Scholar]
  18. L. Wang, Model Predictive Control System Design and Implementation Using MATLAB, (Springer, 2009). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.