Open Access
E3S Web Conf.
Volume 73, 2018
The 3rd International Conference on Energy, Environmental and Information System (ICENIS 2018)
Article Number 05004
Number of page(s) 5
Section Environmental Technology and Pollution Control
Published online 21 December 2018
  1. Niessen J, Harnisch F, Rosenbaum M, Uwe S, Fritz S. Heat treated soil as convenient and versatile source of bacterial communities for microbial electricity generation. Electrochem Commun; 8(5):869–73 (2006). [CrossRef] [Google Scholar]
  2. Parot S, De'lia ML, Bergel A. Forming electrochemically active biofilms from garden compost under chronoamperometry. Bioresour Technol; 99(11):4809–16 (2008). [CrossRef] [Google Scholar]
  3. Lee Y, Nirmalakhandan N. Electricity production in membrane-less microbial fuel cell fed with livestock organic solid waste. Bioresour Technol; 102:5831–5 (2011). [CrossRef] [Google Scholar]
  4. Mohan SV, Chandrasekhar K. Solid phase microbial fuel cell (SMFC) for harnessing bioelectricity from composite food waste fermentation: Influence of electrode assembly and buffering capacity. Bioresour Technol;102:7077–85 (2011). [CrossRef] [PubMed] [Google Scholar]
  5. Wang CT, Liao FY, Liu KS. Electrical analysis Electrical Analysis of Compost Solid Phase Microbial Fuel Cell. International Journal of Hydrogen Energy; 38: 11124–11130 (2013). [CrossRef] [Google Scholar]
  6. Hoitink HAJ, Stone AG, Han DY. Suppression of plant Diseases by Composts. HortSci; 32: 184–187 (1997). [CrossRef] [Google Scholar]
  7. Wang, C. T., Lee, Y. C., Liao, F. Y. Effect of composting parameters on the power performance of solid microbial fuel cells. Sustainability (Switzerland), 7(9), 12634–12643(2015). [CrossRef] [Google Scholar]
  8. Tchobanoglous, G., Theisen, H. and Vigil, S.A. Integrated Solid Waste Management: Engineering Principle and Management Issue. McGraw Hill Inc., New York (1993). [Google Scholar]
  9. Luo, W., Chen, T.B.. Effects of moisture content of compost on its physical and chemical properties. Acta. Ecol. Sin.; 24: 2656–2663 (2004). [Google Scholar]
  10. Tiquia S.M., Tama N.F.Y., Hodgkiss I.J. Effects of turning frequency on composting of spent pig-manure sawdust litter. Bioresource Technology; 62 (1-2): 37–42 (1997). [CrossRef] [Google Scholar]
  11. Wong, J.W.C., K.F. Mak, N.W. Chan, A. Lam, M. Fang, L.X. Zhou, Q.T. Wu and X.D. Liao. Co-composting of soybean residues and leaves in Hong Kong. Bioresource Technology; 76 (2): 99–106 (2001). [Google Scholar]
  12. Ogunwande G. A., Osunade J. A.,. Ogunjimi L.A.O. Effects of Carbon to Nitrogen Ratio and Turning Frequency on Composting of Chicken Litter in Turned-Windrow Piles. Agricultural Engineering International: the CIGR Ejournal. Manuscript EE 07 016. Vol. X. July (2008). [Google Scholar]
  13. Widarti, B. N., Wardhini, W. K., Sarwono, E. Pengaruh Rasio C/N Bahan Baku Pada Pembuatan Komppos Dari Kubis Dan Kulit Pisang. Integrasi Proses, 5(2), 77 (2015). [Google Scholar]
  14. Mangkoedihardjo S., April SAL. Compost On Evapotranspiration Bed Planted With Yellow Flag For Treatment Of Wastewater Containing Anionic Surfactant. Journal of Applied Sciences Research; 8(3): 1630–1633 (2012). [Google Scholar]
  15. del Campo, GA., Perez, J. F., Ca, P., Rodrigo, M. A., Fernandez, F. J., Lobato, J.. Study of a photosynthetic MFC for energy recovery from synthetic industrial fruit juice wastewater; 9, 0–8 (2014). [Google Scholar]
  16. Samudro G., Syafrudin S., Nugraha WD., Sutrisno E., Priyambada IB., Muthi'ah H., Sinaga GN., Hakiem RT. The Effect of COD Concentration Containing Leaves Litter, Canteen and Composite Waste to The Performance of Solid Phase Microbial Fuel Cell (SMFC). E3S Web Conf.; 31(5) (2018). [Google Scholar]
  17. Kim, J., Kim, K., Ye, H., Lee, E., Shin, C., McCarty, P.L., Bae, J.. Anaerobic fluidized bed membrane bioreactor for wastewater treatment. Environ. Sci. Technol; 45 (2), 576–581 (2011). [CrossRef] [PubMed] [Google Scholar]
  18. Chen X.X. Composting technology and equipment manuals and case assembly. Industrial Development Bureau Ministry of Economic Affairs Publishing; Taipei, Taiwan (2005). [Google Scholar]
  19. Liang, C.; Das, K.C.; McClendon, R.W. The influence of temperature and moisture contents regimes on the aerobic microbial activity of a bio-solids composting blend. Bioresour. Technol; 86: 131–137 (2003). [CrossRef] [Google Scholar]
  20. Nakasaki, K.; Yaguchi, H.; Sasaki, Y.; Kubota, H. Effects of pH Control on Composting of Garbage. Waste Manag. Res.; 11: 117–125 (1993). [Google Scholar]
  21. Khudzari, Jauharah Md; Tartakovsky, Boris; Raghavan, G.S. Vijaya. Effect of C/N ratio and salinity on power generation in compost microbial fuel cells. Waste Management (2015). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.