Open Access
E3S Web Conf.
Volume 76, 2019
The 4th International Conference on Science and Technology (ICST 2018)
Article Number 03010
Number of page(s) 6
Section Disaster Mitigation & Management
Published online 15 January 2019
  1. Alberico, I., Di Fiore, V., Wavarone, R., Petrosino, P., Piemontese, L., Tarallo, D., … Marsella, E. The Tsunami Vulnerability Assessment of Urban Environments through Freely Available Datasets: The Case Study of Napoli City (Southern Italy). Journal of Marine Science and Engineering, 3, 9811005 (2015) [Google Scholar]
  2. Engel, M. & Brückner, H. The Identification of Paleo-tsunami Deposits: a Major Challenge in Coastal Sedimentary Research. Coastline Reports, 17, 65-80. (2011) [Google Scholar]
  3. Papadopoulos, G, A., Gràcia, E., Urgeles, R., Sallares, V., De Martini, P,M., Pantosti, D., González, M., Yalciner, A, C., Mascle, J., Sakellariou, D., Salamon, A., Tinti, S., Karastathis, V., Fokaefs, A., Camerlenghi, A., Novikova, T., Papageorgiou, A.. Historical and pre-historical tsunamis in the Mediterranean and its connected seas: Geological signatures, generation mechanisms and coastal impacts. Marine Geology 354 (2014) [Google Scholar]
  4. Attary, N., Unnikrishnan, V, U., van de Lindt, J, W., Cox, D, T., Barbosa, A, R. Performance-Based Tsunami Engineering methodology for risk assessment of structures. Engineering Structures 141, 676-686 (2017) [Google Scholar]
  5. Cankaya, Z.C., Suzen, M.L., Yalcineer, A.C., Kolat, C., Zaytsev, A., Aytore, B. A new GIS-based tsunami risk evaluation: MeTHuVA (METU tsunami human vulnerability assessment) at Yenikapı, Istanbul. Springer Juornal. (2016) [Google Scholar]
  6. Dias, F., Dutykhc, D., O’Brien, L., Renzia, E., Stefanakis, T. 2014. On the modelling of tsunami generation and tsunami inundation. Procedia IUTAM 10 338 – 355 (2014) [Google Scholar]
  7. Subandono, D. & Budiman. Hidup Akrab dengan Gempa dan Tsunami. Bogor: Penerbit Buku Ilmiah Populer. (2008) [Google Scholar]
  8. Dewi RS & Dulbahri. Bencana Tsunami Parangtritis. In M.A. Marfai and D. Mardiatno (Eds), Penaksiran Multirisiko Bencana di Wilayah Kepesisiran Parangtritis (pp). Yogyakarta: Pusat Studi Bencana (PSBA) Universitas Gadjah Mada (2009) [Google Scholar]
  9. Hartoko, A., Helmi, M., Sukarno, M., & Hariyadi. Spatial Tsunami Wave Modelling for the South Java Coastal Area, Indonesia. International Journal of Geomate, 11(25), 2455-2460, (2016) [Google Scholar]
  10. Marfai MA, King L Potential vulnerability implications of coastal inundation due to sea level rise for the coastal zone of Semarang City, Indonesia. Environmental Geology 54:1235-1245 (2008) [CrossRef] [Google Scholar]
  11. Sutikno. Indonesia Negeri 1001 Bencana. Makalah dalam Seminar Sistem Informasi Kebencanaan Sebagai Sebuah Kearifan di Negeri 1001 Bencana. Environmental Geography Srudent Association (unpublished) Fakultas Geografi UGM Yogyakarta, 3-5 Desember (2009) [Google Scholar]
  12. Verstappen, H.Th.. Outline of The Geomorphology of Indonesia. Enschede: ITC. (2000) [Google Scholar]
  13. Adyan, Ö.. Seismic and Tsunami Hazard Potentials in Indonesia with a special emphasis on Sumatra Island. Journal of the School of Marine Science and Technology, Tokai University, 6(3), 19-38. (2008) [Google Scholar]
  14. Lavigne, F., Gomez, C., Gifo, M., Wassmer, P., Hoebreck, C., Mardiatno, D. Paris, R. Field observations of the 17 July 2006 Tsunami in Java. Natural Hazards and Earth System Sciences, 7 (1): 177-183. (2007) [CrossRef] [Google Scholar]
  15. Okamoto, T. & Takenaka, H. Waveform inversion for slip distribution of the 2006 Java tsunami earthquake by using 2.5D finite-difference Green’s function. Earth Planets Space, 61, 17-20 (2009) [Google Scholar]
  16. Dao, H., Peduzzi, P, Global Evaluation of Human Risk and Vulnerability to Natural Hazards, Enviroinfo vol. I: 435-446. (2004) [Google Scholar]
  17. Dewan, A, M., Floods in a Megacity: Geospatial Techniques in Assessing Hazards, Risk and Vulnerability, New York: Springer (2013) [Google Scholar]
  18. Jaimes, M, A., Reinoso, E., Ordaz, M., Huerta, B., Silva, R., Mendoza, E., Rodríguez, J, C. 2016. A new approach to probabilistic earthquake-induced tsunami risk assessment. Ocean & Coastal Management 119: 68-75 (2016) [Google Scholar]
  19. Browning, J., Thomas, N. An assessment of the tsunami risk in Muscat and Salalah, Oman, based on estimations of probable maximum loss. International Journal of Disaster Risk Reduction 16, 75-87 (2016) [CrossRef] [Google Scholar]
  20. Ward, P, J., Marfai, M, A., Yulianto, F., Hizbaron, D, R., Aerts, J, C, J, H.. Coastal inundation and damage exposure estimation: a case study for Jakarta. Nat Hazards , 56,899-916 (2011) [CrossRef] [Google Scholar]
  21. Watanabe, Y, Kawahara, Y.. UAV photogrammetry for monitoring changes in river topography and vegetation. Procedia Engineering 154 , 317 – 325 (2016) [Google Scholar]
  22. Yan, L., Gou, Z., Duan, Y. A UAV Remote Sensing System: Design and Test. Geospatial Technology for Earth Observation, DOI 1 (2009) [Google Scholar]
  23. Suparwati, T.; dkk. Geoekologi Kepesisiran dan Kemaritiman Daerah Istimewa Yogyakarta, Yogyakarta : Parangtritis Geomaritime Science Park (PGSP) (2016) [Google Scholar]
  24. Schneider, B., Hoffmann, G., Reicherter. Scenario-based tsunami risk assessment using a static flooding approach and high-resolution digital elevation data: 139, 183-194 (2016) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.