Open Access
E3S Web Conf.
Volume 78, 2019
2018 International Seminar on Food Safety and Environmental Engineering (FSEE 2018)
Article Number 01008
Number of page(s) 5
Section Nutrition and Health, Medical Treatment and Biomedical Engineering
Published online 15 January 2019
  1. West CE, Jenmalm MC, Prescott SL. The gut microbiota and its role in the development of allergic disease: a wider perspective [J]. Clin Exp Allergy, 2015, 45(1): 43-53. [CrossRef] [PubMed] [Google Scholar]
  2. Zhou D, Zhang H, Bai Z, et al. Exposure to soil, house dust and decaying plants increases gut microbial diversity and decreases serum mmunoglobulin E levels in BALB / c mice [J]. Environmental Microbiology, 2016, 18(5):1326-1337. [CrossRef] [PubMed] [Google Scholar]
  3. Elgin TG, Kern SL, McElroy SJ. Development of the neonatal intestinal microbiome and its association with necrotizing enterocolitis [J]. Clin Therap, 2016, 38(4): 706-715. [CrossRef] [Google Scholar]
  4. Penders J, Gerhold K, Thijs C, et al. New insights into the hygiene hypothesis in allergic diseases:mediation of sibling and birth mode effects by the gut microbiota [J]. Gut Microbes, 2014, 5 (2):239-244. [CrossRef] [PubMed] [Google Scholar]
  5. Mika M, Mack I, Korten I, et al. Dynamics of the nasal microbiota in infancy: A prospective cohort study [J]. J Allergy Clin Immunol, 2015, 135(4):905-912. [CrossRef] [PubMed] [Google Scholar]
  6. Lee E, Kim BJ, Kang MJ, et al. Dynamics of gut microbiota according to the delivery mode in healthy korean infants [J]. Allergy Asthma Immunol Res, 2016, 8(5): 471-477. [CrossRef] [PubMed] [Google Scholar]
  7. Gallego CG, Salminen S. Novel probiotics and prebiotics: how can they help in human gut microbiota dysbiosis? [J]. Appl Food Biotechnol, 2016, 3(2): 72-81. [Google Scholar]
  8. Jakobsson HE, Abrahamsson TR, Jenmalm MC, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section [J]. Gut, 2014, 63(4): 559-566. [CrossRef] [PubMed] [Google Scholar]
  9. Grnlund MM, Grzekowiak L, Isolauri E, et al. Influence of mother’s intestinal microbiota on gut colonization in the infant [J]. Gut Microbes, 2011, 2(4): 227-233. [CrossRef] [PubMed] [Google Scholar]
  10. Favier CF, de Vos WM, Akkermans ADL. Development of bacterial and bifidobacterial communities in feces of newborn babies [J]. Anaerobe, 2003, 9(5): 219-229. [CrossRef] [PubMed] [Google Scholar]
  11. Fernández L, Langa S, Martín V, et al. The human milk microbiota: origin and potential roles in health and disease [J]. Pharmacol Res, 2013, 69(1): 1-10. [CrossRef] [PubMed] [Google Scholar]
  12. Tsuji H, Oozeer R, Matsuda K, et al. Molecular monitoring of the development of intestinal microbiota in Japanese infants [J]. Beneficial Microbes, 2012, 3(2): 113-125. [CrossRef] [PubMed] [Google Scholar]
  13. Martín V, Maldonado-Barragán A, Moles L, et al. Sharing of bacterial strains between breast milk and infant feces [J]. J Hum Lact, 2012, 28(1): 36-44. [CrossRef] [PubMed] [Google Scholar]
  14. Marcobal A, Barboza M, Froehlich J W, et al. Consumption of human milk oligosaccharides by gut-related microbes [J]. J Agricul Food Chem, 2010, 58(9): 5334-5340. [CrossRef] [Google Scholar]
  15. Rescigno M. Intestinal microbiota and its effects on the immune system [J]. Cell Microbiol, 2014, 16(7):1004-1013. [CrossRef] [PubMed] [Google Scholar]
  16. Cox LM, Yamanishi S, Sohn J, et al. altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences [J]. Cell, 2014, 158(4): 705-721. [CrossRef] [PubMed] [Google Scholar]
  17. Greenwood C, Morrow AL, Lagomarcino AJ, et al. Early empiric antibiotic use in preterm infants is associated with lower bacterial diversity and higher relative abundance of Enterobacter [J]. J Pediat, 2014, 165(1): 23-29. [CrossRef] [Google Scholar]
  18. Schokker D, Zhang J, Vastenhouw SA, et al. Longlasting effects of early-life antibiotic treatment and routine animal handling on gut microbiota omposition and immune system in pigs [J]. PLoS One, 2015, 10(2): e0116523. [CrossRef] [PubMed] [Google Scholar]
  19. Korpela K, Salonen A, Virta LJ, et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children [J]. Nat Commun, 2016, 7: 10410. [CrossRef] [PubMed] [Google Scholar]
  20. Grzekowiak, Grnlund MM, Beckmann C, et al. The impact of perinatal probiotic intervention on gut microbiota: double-blind placebo-controlled trials in Finland and Germany [J]. Anaerobe, 2012, 18(1): 7-13. [CrossRef] [PubMed] [Google Scholar]
  21. Lees H, Swann J, Poucher SM, et al. Age and microenvironment outweigh genetic influence on the Zucker rat microbiome [J]. PLoS One, 2014, 9(9):e100916. [CrossRef] [PubMed] [Google Scholar]
  22. Goodrich JK, Waters JL, Poole AC, et al. Human genetics shape the gut microbiome [J]. Cell, 2014, 159(4): 789-799. [CrossRef] [PubMed] [Google Scholar]
  23. Eichenfield LF, Hanifin JM, Beck LA, et al. Atopic dermatitis and asthma: parallels in the evolution of treatment [J]. Pediatrics, 2003, 111(3): 608-616. [CrossRef] [PubMed] [Google Scholar]
  24. Zhao J, Bai J, Shen KL, et al. Questionnaire-based surveg of allergic diseases among children aged 0-14 years in the downtown of Beijing, Chongqing and Guangzhou [J]. Chin J Pediatrics, 2011, 49(10): 740-744. [Google Scholar]
  25. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system [J]. Science, 2012, 336 (6086):1268-1273. [Google Scholar]
  26. Kau AL, Ahern PP, Griffin NW, et al. Human nutrition, the gut microbiome and the immune system [J]. Nature, 2011, 474 (7351): 327-336. [CrossRef] [PubMed] [Google Scholar]
  27. Bjrkstén B, Naaber P, Sepp E, et al. The intestinal microflora in allergic Estonian and Swedish 2-yearold children [J]. Clin Exp Allergy, 1999, 29(3): 342-346. [CrossRef] [PubMed] [Google Scholar]
  28. Young SL, Simon MA, Baird MA, et al. Bifidobacterial species differentially affect expression of cell surface markers and cytokines of dendritic cells harvested from cord blood [J]. Clin Diagn Lab Immunol, 2004, 11(4): 686-690. [PubMed] [Google Scholar]
  29. Kalliomki M, Kirjavainen P, Eerola E, et al. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing [J]. J Allergy Clin Immunol, 2001, 107(1): 129-134. [CrossRef] [PubMed] [Google Scholar]
  30. Schuijs MJ, Willart MA, Vergote K, et al. Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells [J]. Science, 2015, 349(6252): 1106-1110. [Google Scholar]
  31. Jovanovic’ D, Ilic’ N, Miljkovic’-Selimovi B, et al. Campylobacter jejuni infection and IgE sensitization in up to 2-year-old infants [J]. Vojnosanitetski Pregled, 2015, 72(2): 140-147. [CrossRef] [PubMed] [Google Scholar]
  32. Abrahamsson TR, Jakobsson HE, Andersson AF, et al. Low gut microbiota diversity in early infancy precedes asthma at school age [J]. Clin Exp Allergy, 2014, 44(6): 842-850. [CrossRef] [PubMed] [Google Scholar]
  33. Hrmannsperger G, Clavel T, Haller D. Gut matters: microbe-host interactions in allergic diseases [J]. J Allergy Clin Immunol, 2012, 129(6):1452-1459. [CrossRef] [PubMed] [Google Scholar]
  34. Arrieta M C, Finlay B. The intestinal microbiota and allergic asthma [J]. J Infection, 2014, 69: S53-S55. [CrossRef] [Google Scholar]
  35. Russell SL, Gold MJ, Willing BP, et al. Perinatal antibiotic treatment affects murine microbiota, immune responses and allergic asthma [J]. Gut Microbes, 2013, 4(2): 158-164. [CrossRef] [PubMed] [Google Scholar]
  36. Vael C, Vanheirstraeten L, Desager KN, et al. Denaturing gradient gel electrophoresis of neonatal intestinal microbiota in relation to the development of asthma [J]. BMC Microbiol, 2011, 11 (1): 1-7. [CrossRef] [PubMed] [Google Scholar]
  37. Bertelsen RJ, Brantster AL, Magnus MC, et al. Probiotic milk consumption in pregnancy and infancy and subsequent childhood allergic diseases [J]. Journal of Allergy and Clinical Immunology, 2014, 133(1): 1-8. [CrossRef] [Google Scholar]
  38. West CE, Jenmalm MC, Kozyrskyj AL, et al. Probiotics for treatment and primary prevention of allergic diseases and asthma: looking back and moving forward [J]. Exp Rev Clin Imunol, 2016, 12(6): 625-239. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.