Open Access
E3S Web Conf.
Volume 89, 2019
The 2018 International Symposium of the Society of Core Analysts (SCA 2018)
Article Number 02005
Number of page(s) 6
Section Improved SCAL techniques and Interpretation
Published online 29 March 2019
  1. R.H. Brooks and A.T. Corey, Hydrology Papers: Hydraulic Properties of Porous Media, pp. 2–4., Colorado State University, Fort Collins (1964). [Google Scholar]
  2. Wells, J.D., J.O. Amaefule, “Capillary Pressure and Permeability Relationships in Tight Gas Sands”, SPE-13879-MS presented at the SPE/DOE LowPermeability Gas Reservoirs Symposium, Denver, Colorado, U.S.A., 19–22 March (1985). [Google Scholar]
  3. S.D.L. Lekia and R.D. Evans, “A Water-Gas Relative Permeability Relationship for Tight Gas Sand Reservoirs”. Journal of Energy ResourcesTechnology, 112(4), 239–245 (1990). [Google Scholar]
  4. A.H. Thompson, A.J. Katz and C.E. Krohn, “The Microgeometry and Transport Properties of Sedimentary Rock”. Advances in Physics, 36(5), 625–694 (1987). [Google Scholar]
  5. P.G. Toledo, R.A. Novy, H.T. Davis and L.E. Scriven, “Capillary Pressure, Water Relative Permeability, Electrical Conductivity and Capillary Dispersion Coefficient of Fractal Porous Media at Low Wetting Phase Saturations”. SPE Advanced Technology Series, 2(1), 136–141 (1994). [CrossRef] [Google Scholar]
  6. Y. Yang, C. He and F. Lin, “Comments on “Reply to comments on “Analytical Derivation of Brooks-Corey Type Capillary Pressure Models Using Fractal Geometry and Evaluation of Rock Heterogeneity”“”. Journal of Petroleum Science and Engineering, 133, 713–715 (2015). [CrossRef] [Google Scholar]
  7. R.A. Novy, P.G. Toledo, H.T. Davis and L.E. Scriven, “Capillary Dispersion in Porous Media at Low Wetting Phase Saturations”. Chemical Engineering Science, 44(9), 1785–1797 (1989). [Google Scholar]
  8. A.G. Hunt, Percolation Theory for Flow in Porous Media., Springer-Verlag, Heidelberg (2004). [Google Scholar]
  9. A.G. Hunt, “An Explicit Derivation of an Exponential Dependence of the Hydraulic Conductivity on Relative Saturation”. Advances in Water Resources, 27(2), 197–201 (2004). [Google Scholar]
  10. J. Cano Barrita, B.J. Balcom, M.J. McAloon, D.P. Green, J. Dick, “Capillary pressuremeasurement on cores by MRI”. Journal of Petroleum Technology, 60(8), 63–66 (2008). [Google Scholar]
  11. Chen, Q., B.J. Balcom, “Measurement of Rock-Core Capillary Pressure Curves using a Single-Speed Centrifuge and One-Dimensional Magnetic-Resonance Imaging”, Journal of Chemical Physics, (2005) 122, 21, Article no. 214720. [Google Scholar]
  12. M.A. Fernø, Ø. Bull, P.O. Sukka and A. Graue, “Capillary Pressures by Fluid Saturation ProfileMeasurements During Centrifuge Rotation”. Transport in Porous Media, 80(2), 253–267 (2009). [Google Scholar]
  13. J.V. Nørgaard, D. Olsen, J. Reffstrup and N. Springer, “Capillary-Pressure Curves for Low-Permeability Chalk Obtained by Nuclear Magnetic ResonanceImaging of Core-Saturation Profiles”. SPE Reservoir Evaluation & Engineering, 2(2), 141–148 (1999). [CrossRef] [Google Scholar]
  14. D.P. Green, J. Gardner, B.J. Balcom, M.J. McAloon and P.F. de J. Cano-Barrita,, “Comparison Study of Capillary Pressure Curves Obtained Using Traditional Centrifuge and Magnetic ResonanceImaging Techniques,” SPE 110518 presented at the SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma, U.S.A., 19-23 April (2008). [Google Scholar]
  15. B.A. Baldwin and W.S. Yamanashi, “Capillary-PressureDeterminations from NMR Images of Centrifuged Core Plugs: Berea Sandstone”. The Log Analyst, 32, 5SPWLA-1991-v32n5a6 (1991). [Google Scholar]
  16. A.G. Hunt and G.W. Gee, “Application of Critical Path Analysis to Fractal Porous Media: Comparison with Examples from the Hanford Site”. Advances in Water Resources, 25(2), 129–146 (2002). [Google Scholar]
  17. A. Satyanaga, H. Rahardjo, E.-C. Leong and J.-Y. Wang, “Water Characteristic Curve of Soil with Bimodal Grain-Size Distribution”. Computers and Geotechnics, 48(March), 51–61 (2013). [Google Scholar]
  18. H. Zhou, S.J. Mooney and X. Peng, “Bimodal SoilPore Structure Investigated by a Combined SoilWater Retention Curve and X-Ray Computed Tomography Approach”. Soil Science Society of America Journal, 81(6), 1270–1278 (2017). [CrossRef] [Google Scholar]
  19. A. Firoozabadi and K. Ishimoto, “Reinfiltration in Fractured Porous Media: Part 1- One Dimensional Model. SPE Advanced Technology Series, 2(2), 35–44 (1994). [CrossRef] [Google Scholar]
  20. Pirker, B., G.M. Mittermeir, Z.E. Heinemann, “Numerically Derived Type Curves for Assessing Matrix Recovery Factors”, SPE-107074-MS presented at the EUROPEC/EAGE Conference and Exhibition, London, U.K., 11–14 June (2007). [Google Scholar]
  21. G.M. Mittermeir, “Material-Balance Method for Dual-Porosity Reservoirs with Recovery Curves to Model the Matrix/Fracture Transfer”. SPEReservoir Evaluation and Engineering, 18(2), 171–186 (2015). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.