Open Access
Issue
E3S Web Conf.
Volume 92, 2019
7th International Symposium on Deformation Characteristics of Geomaterials (IS-Glasgow 2019)
Article Number 13004
Number of page(s) 5
Section Behaviour at Geotechnical Interfaces
DOI https://doi.org/10.1051/e3sconf/20199213004
Published online 25 June 2019
  1. H. Brandl. Energy foundations and other thermo-active ground structures. Géotechnique. 56: 81-122 (2006) [CrossRef] [Google Scholar]
  2. L. Laloui, M. Moreni, L. Vulliet. Comportement d’un pieu bi-fonction, fondation et échangeur de chaleur. Can Geotech J. 40: 388-402 (2003) [CrossRef] [Google Scholar]
  3. P.J. Bourne-Webb, B. Amatya, K. Soga, T. Amis, C. Davidson, and P. Payne. Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles. Géotechnique. 59: 237-248 (2009) [CrossRef] [Google Scholar]
  4. J.S. McCartney, K.D. Murphy. Strain Distributions in Full-Scale Energy Foundations (DFI Young Professor Paper Competition 2012). DFI J-J Deep Found Inst 6: 26-38 (2012) [CrossRef] [Google Scholar]
  5. G.A. Akrouch, M. Sánchez, J.L. Briaud. Thermo-mechanical behavior of energy piles in high plasticity clays. Acta Geotech. 9: 399-412 (2014) [CrossRef] [Google Scholar]
  6. R.M. Singh, A. Bouazza, B. Wang, C.H. Haberfield, S. Baycan, and Y. Carden. Thermal and Thermo-Mechanical Response of a Geothermal Energy Pile. World Geotherm Congr. (2015) [Google Scholar]
  7. M. Sutman, G. Olgun, T. Brettmann. Full-Scale Field Testing of Energy Piles. Geotech Spec Publ. 1638-1647 (2015) [Google Scholar]
  8. J.S. McCartney, J.E. Rossenberg. Impact of Heat Exchange on Side Shear in Thermo-Active Foundations. Proc Geo-Frontiers 2011, ASCE. 488-498 (2011) [CrossRef] [Google Scholar]
  9. B. Amatya, K. Soga, P.J. Bourne-Webb, T. Amis, L. Laloui. Thermo-mechanical behaviour of energy piles. Géotechnique. 62: 503-519 (2012) [CrossRef] [Google Scholar]
  10. P.J. Bourne-Webb, B. Amatya, K. Soga. A framework for understanding energy pile behaviour. Proc Inst Civ Eng-Geotech Eng. 166: 170-177 (2013) [CrossRef] [Google Scholar]
  11. S. Xiao, M.T. Suleiman, J. McCartney. Shear Behavior of Silty Soil and Soil-Structure Interface under Temperature Effects. Geo-Congress. 4105-4114 (2014) [Google Scholar]
  12. A. Di Donna, A. Ferrari, L. Laloui. Experimental investigations of the soil-concrete interface: physical mechanisms, cyclic mobilization, and behaviour at different temperatures. Can Geotech J. 53: 659-672 (2016) [CrossRef] [Google Scholar]
  13. N. Yavari, A.M. Tang, J-M. Pereira, G. Hassen. Effect of temperature on the shear strength of soils and the soil-structure interface. Can Geotech J. 53: 1186-1194 (2016a) [CrossRef] [Google Scholar]
  14. N. Yavari, A.M. Tang, J-M. Pereira, G. Hassen. Mechanical behaviour of a small-scale energy pile in saturated clay. Géotechnique. 66: 878-887 (2016b) [CrossRef] [Google Scholar]
  15. S. Xiao, M. T. Suleiman, R. Elzeiny, H. Xie, and M. Al-Khawaja. Soil-Concrete Interface Properties Subjected to Temperature Changes and Cycles Using Direct Shear Tests. Geotech Front 2017. 175-183 (2017) [Google Scholar]
  16. A. R. Vasilescu, A.-L. Fauchille, C. Dano, P. Kotronis, R. Manirakiza, and P. Gotteland. Impact of Temperature Cycles at Soil-Concrete Interface for Energy Piles. International Symposium on Energy Geotechnics. 35-42 (2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.