Open Access
E3S Web Conf.
Volume 92, 2019
7th International Symposium on Deformation Characteristics of Geomaterials (IS-Glasgow 2019)
Article Number 13005
Number of page(s) 6
Section Behaviour at Geotechnical Interfaces
Published online 25 June 2019
  1. C.J. Billington, G.H.G. Lewis, The strength of large diameter grouted connections, Proceedings of offshore technology conference, pp. 291-301 (1978). [Google Scholar]
  2. P. Dallyn, A. El-Hamalawi, A. Palmeri, R. Knight, Experimental testing of grouted connections for offshore substructures: A critical review. Structures, 3, pp. 90-108 (2015). [CrossRef] [Google Scholar]
  3. I. Lotsberg, A. Serednicki, Behaviour of grouted connections of monopile structures at ultimate static and cyclic limit states, The Structural Engineer, February, pp. 51-57 (2013). [Google Scholar]
  4. C.J. Billington, I.E. Tebbett, Fatigue strength of grouted tubular steel connections for offshore structures, Int. Assoc. Bridg. Struct. Eng., pp. 625-632 (1982). [Google Scholar]
  5. P. Schaumann, A. Raba, A. Bechtel, Impact of Contact Interface Conditions on the Axial Load Bearing Capacity of Grouted Connections, Proceedings of EWEA (2013). [Google Scholar]
  6. Det Norske Veritas Industry AS, Report No: 94-3243, Factors of Safety for Grouted Connection Phase II the Impact of Cyclic Load on Connections with High H/S Values (1994). [Google Scholar]
  7. J. Van Der Tempel, Design of support structures for offshore wind turbines, Doctoral dissertation, TU Delft, Delft University of Technology (2006). [Google Scholar]
  8. A. Merritt, F. Schroeder, R. Jardine, B. Stuyts, D. Cathie, W. Cleverly, Development of pile design methodology for an offshore wind farm in the North Sea, in Offshore Site Investigation and Geotechnics: Integrated Technologies-Present and Future (2012). [Google Scholar]
  9. J. Dührkop, A.H., Augustesen, P. Barbosa, Cyclic pile load tests combined with laboratory results to design offshore wind turbine foundations in chalk, Proc. Conf. Frontiers in Offshore Geotechnics III (ISFOG), pp. 533-538 (2015). [CrossRef] [Google Scholar]
  10. M. Boulon, A 3-d direct shear device for testing the mechanical behaviour and the hydraulic conductivity of rock joints, Proc., MJFR-2 Conference, pp. 407-413 (1995) [Google Scholar]
  11. O. Buzzi, Hydromécanique du contact entre géomatériaux: expérimentation et modélisation. Application au stockage de déchets nucléaires, Université Joseph-Fourier-Grenoble I (2004). [Google Scholar]
  12. P.L.J. Domone (Ed.), D.S.A. Jefferis (Ed.), Structural Grouts. London: CRC Press, 1st Edition (1993). [Google Scholar]
  13. I.W. Johnston, T.S.K. Lam, A.F. Williams, Constant normal stiffness direct shear testing for socketed pile design in weak rock, Geotechnique, 37, 1, pp. 83-89 (1987). [CrossRef] [Google Scholar]
  14. M. Boulon, P. Foray, Physical and numerical simulation of lateral shaft friction along offshore piles in sand. Proceedings of the 3rd International Conference on Numerical methods in Offshore piling, pp. 127-147 (1986). [Google Scholar]
  15. H.G. Poulos, Cyclic Stability Diagram for Axially Loaded Piles, Journal of Geotechnical Engineering, 114, 8, pp. 877-895 (1988). [CrossRef] [Google Scholar]
  16. D.S. Anders, Betontechnologische Einflüsse auf das Tragverhalten von Grouted Joints genehmigte Dissertation (2007). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.