Open Access
Issue
E3S Web Conf.
Volume 94, 2019
International Symposium on Global Navigation Satellite System 2018 (ISGNSS 2018)
Article Number 02004
Number of page(s) 9
Section Indoor and Urban Navigation
DOI https://doi.org/10.1051/e3sconf/20199402004
Published online 08 May 2019
  1. L. Cheng, H. Yue, G. Xie, M. F. Ren, Multipath Estimation Using an Intelligent Optimization Algorithm with Non-Gaussian Noise, Proceedings of the 23rd International Conference on Automation & Computing, UK (2017). [Google Scholar]
  2. N. Sunderhauf, M. Obst, G. Wanielik and P. Protzel, Multipath Mitigation in GNSS-based Localization using Robust Optimization, Proc. of IEEE Intelligent Vehicles Symposium, 2012. [Google Scholar]
  3. N.-S. Zheng, L.-S. Cai, H.-F. Bian, C. Lin, Hybrid particle filtering algorithm for GPS multipath mitigation, Transactions of Nonferrous Metals Society of China, Volume 24, Issue 5, May 2014, pp. 1554-1561. [CrossRef] [Google Scholar]
  4. S. Zair, S. L. Hegarat-Mascle and E. Seignez, Outlier Detection in GNSS Pseudo-Range/Doppler Measurements for Robust Localization, Sensors, 16, 580, 22 pages (2016). [CrossRef] [Google Scholar]
  5. A. Pirsiavash, A. Broumandan and G. Lachapelle, Characterization of Signal Quality Monitoring Techniques for Multipath Detection in GNSS Applications, Sensors, 2017, 17, 1579, 24 pages. [CrossRef] [Google Scholar]
  6. B. W. Parkinson, J. Spilker, P. Axelrad and P. Enge, Global Positioning System: Theory and Applications, Am. Inst. Aeronaut. Astronaut., Washington D. C., (1996) [CrossRef] [Google Scholar]
  7. E. A. Wan R. Van der Merwe, The unscented Kalman filter for nonlinear estimation, In Proc. of IEEE Symposium 2000 (AS-SPCC) (Lake Louise, Oct 2000). [Google Scholar]
  8. D. J. Jwo and C. N. Lai, Unscented Kalman filter with nonlinear dynamic process modeling for GPS navigation, GPS Solutions, 12, pp. 249-260 (2008). [CrossRef] [Google Scholar]
  9. H. X. Nie, J. Guan, H. W. Bian, Fuzzy Adaptive Kalman Filtering in INS/ GPS Integrated Navigation System, Ship Electronic Engineering,Vol. 31 No.167 (2011) [Google Scholar]
  10. A. H. Mohamed, K. P. Schwarz, Adaptive Kalman filtering for INS/GPS, Journal of Geodesy, 73, 193-203 (1999) [Google Scholar]
  11. G. Chen and M. Harigae, Using IMM Adaptive Estimator in GPS Positioning, SICE, pp. 25-27 (2001). [Google Scholar]
  12. Y. Chong, K. Zhang and M. Lu, Exploring a Better IMM-UKF Fusion Algorithm Based on Current Statistical Model in Target Tracking, Journal of Northwestern Polytechnical University, Vol.29, No.6, December (2011). [Google Scholar]
  13. R. C. Zang, P. Y. Cui, H. T. Cui, Y. Jin, Integrated navigation algorithm based on IMM-UKF, Control Theory & Applications, Vol. 24, No.4 (2007) [Google Scholar]
  14. D. J. Jwo, F. C. Chung, K. L. Yu, GPS/INS Integration Accuracy Enhancement Using the Interacting Multiple Model Nonlinear Filters, Journal of Applied Research and Technology, Vol. 11,, pp.496-509 (2013) [CrossRef] [Google Scholar]
  15. C. H. Tseng, C.-W. Chang and D. J. Jwo, Fuzzy Adaptive Multiple Model Using Nonlinear Filter for Integrated Navigation Sensor Fusion, Sensors, 11, 2090-2111 (2011) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.