Open Access
Issue
E3S Web Conf.
Volume 106, 2019
5th International Scientific Conference on Civil Engineering-Infrastructure-Mining
Article Number 01004
Number of page(s) 8
DOI https://doi.org/10.1051/e3sconf/201910601004
Published online 24 June 2019
  1. Y. Qiu, D.C. Sego, Laboratory properties of mine tailings, Canadian Geotechnical Journal, 38, 1,183-190, (2001) [CrossRef] [Google Scholar]
  2. L.G. Bromwell, W.D. Carrier, Consolidation of fine-grained mining wastes, Proc. 6th Panamerican Conference on Soil Mechanics and Foundation Engineering, Lima, 1, 293-304, (1979) [Google Scholar]
  3. K. Been, G.C. Sills, Self-weight consolidation of soft soils: An experimental and theoretical study, Géotechnique 31, 4, 519-535, (1981) [CrossRef] [Google Scholar]
  4. G. Imai, Experimental studies on sedimentation mechanism and sediment formation of clay materials, Soils and Foundations, 21, 1, 7-20, (1981) [CrossRef] [Google Scholar]
  5. R.W. Scully, R.L. Schiffman, H.W. Olsen, H.Y. Ko, Validation of consolidation properties of phosphatic clay at very high voids ratio, Proc. Symposium on Sedimentation/ Consolidation Models, Prediction and validation, edited by R. N. Yong and F. C. Townsend, 158-181. San Francisco: ASCE. (1984) [Google Scholar]
  6. M. Malekzadeh, J. Lovisa, N. Sivakugan, Consolidation of Cannington mine tailing, Proc. ANZ 2015 The Changing Face of the Earth: Geomechanics & Human Influence, (2015) [Google Scholar]
  7. M. Kovačević, D. Jurić-Kaćunić, L. Librić, G. Ivoš, Engineering soil classification according to EN ISO 14688-2:2018, Gradevinar, 70, 10, 873-879, (2018) [Google Scholar]
  8. K. Head, Manual of soil laboratory testing, Effective stress tests, Volume 3, John Wiley and Sons (1998) [Google Scholar]
  9. B. Olek, E. Pilecka, Hydraulic conductivity of coal mine tailings, Proc. 18th International Multidisciplinary Scientific Geoconference SGEM 2018, Vienna, Austria, 18, 4.3, 63-70, (2018) [Google Scholar]
  10. T. Le, B. Fatahi, (2016), Trust-region reflective optimisation to obtain soil visco-plastic properties, Engineering Computations, 33, 2, 410 - 442, (2016) [Google Scholar]
  11. Z.-Y. Yin, Q.-Y Zhu, D-M Zhang, Comparison of two creep degradation modeling approaches for soft structured clays. Acta Geotechnica, 12, 6, 1395-1413, (2017) [CrossRef] [Google Scholar]
  12. S. Levasseur, Y. Malecot, M. Boulon, E. Flavigny, Soil parameter identification using a genetic algorithm, International Journal of Numerical and Analytical Methods in Geomechanics, 32, 189-213, (2008) [CrossRef] [Google Scholar]
  13. M.A. Biot, 1941. General theory of three-dimensional consolidation, Journal of Applied Physics, 12, 155-164, (1941) [Google Scholar]
  14. Z.-Y. Yin, M. Karstunen, C.S. Chang, M. Koskinen, M. Jolander, Modeling time-dependent behavior of soft sensitive clay, Journal of Geotechnical and Geoenvironmental Engineering, 137 , 11, 1103-1113, (2011) [CrossRef] [Google Scholar]
  15. N. Sivasithamparam, M. Karstunen, P. Bonnier, Modelling creep behaviour of anisotropic soft soils, Computers and Geotechnics, 69, 46-57, (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.