Open Access
Issue
E3S Web Conf.
Volume 108, 2019
Energy and Fuels 2018
Article Number 01002
Number of page(s) 9
Section Energy
DOI https://doi.org/10.1051/e3sconf/201910801002
Published online 05 July 2019
  1. ARE SA: Statystyka elektroenergetyki polskiej, Warszawa (2004-2016) [Google Scholar]
  2. I. Pavlova-Marciniak, Implementation of climate policy assumptions in Poland, Proceedings of The 8th International Scientific Symposium ELEKTROENERGETIKA 2015, Stara Lesna, Slovak Republic (2015) [Google Scholar]
  3. M. Kornatka, A. Gawlak, Comparative analysis of operating conditions in Polish medium-voltage and 110 kV networks, Proceedings of The 8th International Scientific Symposium ELEKTROENERGETIKA 2015, Stara Lesna, Slovak Republic (2015) [Google Scholar]
  4. M. Kornatka, The weighted kernel density estimation methods for analysing reliability of electricity supply, in: 17th International Scientific Conference on Electric Power Engineering (EPE), Prague (2016) [Google Scholar]
  5. GUS (Central Statistical Office of Poland), Energy statistics, Gospodarka PaliwowoEnergetyczna. Warszawa (2004 – 2016) [Google Scholar]
  6. I. Dobrzańska, K. Dąsal, J. Łyp, T. Popławski, J. Sowiński J, Prognozowanie w elektroenergetyce. Zagadnienia wybrane. WPCz Częstochowa (2002) [Google Scholar]
  7. T. Popławski (ed), K. Dąsal, J. Łyp, J. Sowiński, Wybrane zagadnienia prognozowania długoterminowego w systemach elektroenergetycznych, WPCz Częstochowa (2011) [Google Scholar]
  8. J.-S.R Jang, ANFIS: Adaptive-Network-Based Fuzzy Inference System, IEEE Trans. Systems, Man, and Cybernetics, 23, 665 (1993) [CrossRef] [Google Scholar]
  9. D. Rutkowska, M. Piliński, L. Rutkowski, Sieci neuronowe, algorytmy genetyczne i systemy rozmyte, PWN Warszawa (1999) [Google Scholar]
  10. J. Sowiński, M. Szydłowski, Forecast of Electricity Supply Using Adaptive NeuroFuzzy Inference System, in: Rusek S., Gono R., 18th International Scientific Conference on Electric Power Engineering, IEEE New York (2017) [Google Scholar]
  11. J. Sowiński, Medium-Term Forecast of Monthly Supply of Electricity and MaximumDemand-Day Power Using Adaptive Neuro-Fuzzy Inference System, in: M. Kolcun, I. Kolcunova, J. Kurimsky, 9th International Scientific Symposium on Electrical Power Engineering, Stara Leśna, Słowacja (2017) [Google Scholar]
  12. L.-Ch. Ying, M.-Ch. Pan, Using adaptive network based fuzzy inference system to forecast regional electricity loads, Energy Conversion and Management, 49, 205 (2008) [Google Scholar]
  13. L.A. Zadeh, Fuzzy sets. Information and Control, 8, 338 (1965) [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.