Open Access
Issue
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
Article Number 01026
Number of page(s) 8
Section Advanced HVAC&R&S Technology
DOI https://doi.org/10.1051/e3sconf/201911101026
Published online 13 August 2019
  1. X. Cao, X. Dai, and J. Liu, Energy Build., 128, 198–213, (2016) [Google Scholar]
  2. G. Paoletti, R. Pascual Pascuas, R. Pernetti, and R. Lollini, Buildings, 7, 43, (2017) [CrossRef] [Google Scholar]
  3. A. Prieto, U. Knaack, T. Klein, and T. Auer, Renew. Sustain. Energy Rev., 71, 89–102, (2017) [CrossRef] [Google Scholar]
  4. B. Sanner, R. Kalf, A. Land, and K. Mutka, P. Papillon, G. Stryi-Hipp, W. Weiss, European Technology Platform on Renewable Heating & Cooling, (2011) [Google Scholar]
  5. ASHRAE, “Standard 55 -Thermal Environmental Conditions for Human Occupancy,” (2010) [Google Scholar]
  6. European Comission, “Indoor air pollution: new EU research reveals higher risks than previously thought,” Eur. Com., (2003) [Google Scholar]
  7. R. L. Fehr, Guid. to Build. Energy Effic. Homes, 103–130, (2009) [Google Scholar]
  8. D. W. Hawes, D. Feldman and D. Banu, Energy Build., 20, 77–86, (1993) [Google Scholar]
  9. J. Kośny, PCM-Enhanced Building Components, (2015) [Google Scholar]
  10. A. Fallahi, G. Guldentops, M. Tao, S. Granados-Focil, and S. Van Dessel, Appl. Therm. Eng., 127, 1427–1441, (2017) [Google Scholar]
  11. W. Su, J. Darkwa, and G. Kokogiannakis, Renew. Sustain. Energy Rev., 48, 373–391, (2015) [CrossRef] [Google Scholar]
  12. M. Fatih Demirbas, Energy Sources, Part B Econ. Plan. Policy, 1, 85–95, (2006) [Google Scholar]
  13. C. Barreneche, A. Solé, L. Miró, I. Martorell, A. I. Fernández, and L. F. Cabeza, Thermochim. Acta, 553, 23–26, (2013) [Google Scholar]
  14. N. Xie, Z. Huang, Z. Luo, X. Gao, Y. Fang, and Z. Zhang, Appl. Sci., 7, 1317, (2017) [CrossRef] [Google Scholar]
  15. A. S. Fleischer, Thermal Energy Storage Using Phase Change Materials Fundamentals and Applications, (2015) [Google Scholar]
  16. Z. Yinping, J. Yi, and J. Yi, Meas. Sci. Technol., 10, 201–205, (1999) [Google Scholar]
  17. M. Fuensanta, U. Paiphansiri, M. D. Romero-Sánchez, C. Guillem, Á. M. López-Buendía, and K. Landfester, Thermochim. Acta, 565, 95–101, (2013) [Google Scholar]
  18. C. Liu, Z. Rao, J. Zhao, Y. Huo, and Y. Li, Nano Energy, 814-826, (2015) [Google Scholar]
  19. W. Lu and S. A. Tassou, Appl. Energy, 91, 366–374, (2012) [Google Scholar]
  20. M. K. Rathod and J. Banerjee, Renew. Sustain. Energy Rev., 18, 246–258, (2013) [CrossRef] [Google Scholar]
  21. R. H. Müller, Anal. Chem., 35, 103A–105A, (2012) [Google Scholar]
  22. S. R. Sandler, W. Karo, J.-A. Bonesteel, and E. M. Pearce, Polym. Synth. Charact., 1, 108–119, (2007) [Google Scholar]
  23. R. Jacob and F. Bruno, Renew. Sustain. Energy Rev., 48, 79–87, (2015) [CrossRef] [Google Scholar]
  24. V. V. Tyagi, S. C. Kaushik, S. K. Tyagi, and T. Akiyama, Renew. Sustain. Energy Rev., 15, 1373–1391, (2011) [CrossRef] [Google Scholar]
  25. E. M. Shchukina, M. Graham, Z. Zheng, and D. G. Shchukin, Chem. Soc. Rev., 47, 4156, (2018) [Google Scholar]
  26. T. E. Alam, J. S. Dhau, D. Y. Goswami, and E. Stefanakos, Appl. Energy, 154, 92–101, (2015) [Google Scholar]
  27. A. Jamekhorshid, S. M. Sadrameli, and M. Farid, Renew. Sustain. Energy Rev., 31, 531–542, (2014) [CrossRef] [Google Scholar]
  28. X. Q. Zhai, X. L. Wang, T. Wang, and R. Z. Wang, Renew. Sustain. Energy Rev., 22, 108–120, (2013) [CrossRef] [Google Scholar]
  29. V. Morcos, Sol. Wind Technol., 7, 197–202, (1990) [CrossRef] [Google Scholar]
  30. M. Lacroix, Int. J. Heat Mass Transf., 36, 2083–2092, (1993) [Google Scholar]
  31. Y. W. Zhang and A. Faghri, Int. J. Heat Mass Transf., 39, 3165–3173, (1996) [Google Scholar]
  32. A. Trp, Sol. Energy, 79, 648–660, (2005) [Google Scholar]
  33. A. Trp, K. Lenic, and B. Frankovic, Appl. Therm. Eng., 26, 1830–1839, (2006) [Google Scholar]
  34. M. Akgün, O. Aydin, and K. Kaygusuz, Appl. Therm. Eng., 28, 405–413, (2008) [Google Scholar]
  35. M. J. Hosseini, M. Rahimi, and R. Bahrampoury, Int. Commun. Heat Mass Transf., 50, 128–136, (2014) [CrossRef] [Google Scholar]
  36. H. Eslamnezhad and A. B. Rahimi, Appl. Therm. Eng., 113, 813–821, (2017) [Google Scholar]
  37. M. Mastani Joybari, F. Haghighat, and S. Seddegh, Energy Build., 139, 426–438, (2017) [Google Scholar]
  38. L. Jian-you, Sol. Energy, 82, 977–985, (2008) [Google Scholar]
  39. W. J. Hu, M. N. Chang, Y. Gao, Q. L. Zhang, L. Y. Yang, and D. Y. Li, Procedia Eng., 205, 3088–3095, (2017) [Google Scholar]
  40. W. Youssef, Y. T. Ge, and S. A. Tassou, Energy Convers. Manag., 157, 498–510, (2018) [Google Scholar]
  41. E. S. Fath, Energy Convers. Manag., 31, 149–155, (1991) [Google Scholar]
  42. J. R. Balikowski and J. C. Mollendorf, J. Heat Transfer, 129, 265, (2007) [Google Scholar]
  43. M. Medrano, M. O. Yilmaz, M. Nogués, I. Martorell, J. Roca, and L. F. Cabeza, Appl. Energy, 86, 2047–2055, (2009) [Google Scholar]
  44. A. Maccarini, G. Hultmark, N. C. Bergsøe, and A. Afshari, Sustain. Cities Soc., 42, 384–395, (2018) [Google Scholar]
  45. X. Y. Li, Y. Cui, and Y. Y. Wu, ICIC 2010-3rd Int. Conf. Inf. Comput., 4, 23–26, (2010) [Google Scholar]
  46. S. Wu, G. Fang, and X. Liu, Int. J. Therm. Sci., 49, 1752–1762, (2010) [Google Scholar]
  47. R. Parameshwaran, S. Harikrishnan, and S. Kalaiselvam, Energy Build., 42, 1353–1360, (2010) [Google Scholar]
  48. R. Parameshwaran and S. Kalaiselvam, Energy Build., 69, 202–212, (2014) [Google Scholar]
  49. M. De Falco, M. Capocelli, and A. Giannattasio, Energy Build., 122, 1–10, (2016) [Google Scholar]
  50. D. Zhao and G. Tan, Appl. Energy, 138, 381–392, (2015) [Google Scholar]
  51. X. Y. Li, L. Yang, X. L. Wang, X. Y. Miao, Y. Yao, and Q. Q. Qiang, Energy, 150, 591–600, (2018) [CrossRef] [Google Scholar]
  52. F. Bruno, N. H. S. Tay, and M. Belusko, Energy Build., 76, 347–353, (2014) [Google Scholar]
  53. N. H. S. Tay, M. Belusko, and F. Bruno, Energy Build., 50, 234–242, (2012) [Google Scholar]
  54. M. Virta D. Butler, J. Gräslund, J. Hogeling, E. Lund Kristiansen, M. Reinikainen, G. Svensson, Chilled Beams Application Guide Book, Rehva Guidebook no 5, (2005) [Google Scholar]
  55. A. Maccarini, M. Wetter, A. Afshari, G. Hultmark, N. C. Bergsøe, and A. Vorre, Energy Build., 134, 234–247, (2017) [Google Scholar]
  56. A. Maccarini, A two-pipe system for simultaneous heating and cooling of office buildings,(2017) [Google Scholar]
  57. F. Souayfane, F. Fardoun, and P. H. Biwole, Energy Build., 129, 396–431, (2016) [Google Scholar]
  58. C. Arkar, B. Vidrih, and S. Medved, Int. J. Refrig., 30, 134–143, (2007) [Google Scholar]
  59. H. Akeiber, P. Nejat, M. Z. Abd. Majid, M. A. Wahid, F. Jomehzadeh, I. Z. Famileh, J. K. Calautit, B. R. Hughes, S. A. Zaki, Renew. Sustain. Energy Rev., 60, 1470–1497, (2016) [CrossRef] [Google Scholar]
  60. Retrieved from URL: https://www.rubitherm.eu/media/products/datasheets/Techdata_-RT15_EN_06082018.PDF [Google Scholar]
  61. Retrieved from URL: https://www.rubitherm.eu/media/products/datasheets/Techdata_-RT18HC_EN_06082018.PDF [Google Scholar]
  62. D. Zhou, C. Y. Zhao, and Y. Tian, Appl. Energy, 92, 593–605, (2012) [Google Scholar]
  63. A. Hasan and A. A. Sayigh, Renew. Energy, 4, 69–76, (1994) [Google Scholar]
  64. A. Sharma, V. V. Tyagi, C. R. Chen, and D. Buddhi, Renew. Sustain. Energy Rev., 13, 318–345, (2009) [CrossRef] [Google Scholar]
  65. S. Kalaiselvam, K. Sureshkumar, and V. Sriram, Therm. Sci., 20, 1543–1554, (2016) [CrossRef] [Google Scholar]
  66. Retrieved from URL: http://www.pcmproducts.net/files/PCM%20Range%202018%20Rev_D%20Compressed.pdf [Google Scholar]
  67. Retrieved from URL: http://www.puretemp.com/stories/puretemp-15-tds [Google Scholar]
  68. Retrieved from URL: http://www.puretemp.com/stories/puretemp-18-tds [Google Scholar]
  69. Retrieved from URL: http://www.puretemp.com/stories/puretemp-20-tds [Google Scholar]
  70. S. Wi, J. Seo, S. G. Jeong, S. J. Chang, Y. Kang, and S. Kim, Sol. Energy Mater. Sol. Cells, 143, 168–173, (2015) [Google Scholar]
  71. Retrieved from URL: https://www.rubitherm.eu/media/products/datasheets/Techdata_-SP15_EN_15112018.PDF [Google Scholar]
  72. U. Stritih and V. Butala, Int. J. Refrig., 33, 1676–1683, (2010) [Google Scholar]
  73. M. Yamaha, S. Misaki, and D. Shinya Misaki, 9669, (2011) [Google Scholar]
  74. K. Nagano, S. Takeda, T. Mochida, K. Shimakura, and T. Nakamura, Energy Build., 38, 436–446, (2006) [Google Scholar]
  75. G. J. Suppes, M. J. Goff, and S. Lopes, Chem. Eng. Sci., 58, 1751–1763, (2003) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.