Open Access
Issue
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
Article Number 02002
Number of page(s) 8
Section Indoor Environment Quality and Others
DOI https://doi.org/10.1051/e3sconf/201911102002
Published online 13 August 2019
  1. De Dear, R. (2011). Revisiting an old hypothesis of human thermal perception: alliesthesia. Building Research & Information, 39 (2), 108–117. [Google Scholar]
  2. CEN, C. (1752). Ventilation for Buildings: Design Criteria for the Indoor Environment 1998. [Google Scholar]
  3. Standard, A. S. H. R. A. E. (2004). Standard 55-2004. Thermal environmental conditions for human occupancy, 9-11. [Google Scholar]
  4. Melikov, A. K. (2004), Personalized ventilation. Indoor Air, 14: 157–167. [CrossRef] [PubMed] [Google Scholar]
  5. Melikov, A. K., & Knudsen, G. L. (2007). Human response to an individually controlled microenvironment. HVAC&R Research, 13 (4), 645–660. [CrossRef] [Google Scholar]
  6. Watanabe, S., Melikov, A. K., & Knudsen, G. L. (2010). Design of an individually controlled system for an optimal thermal microenvironment. Building and Environment, 45 (3), 549–558. [CrossRef] [Google Scholar]
  7. Demeter, M. G., Wichman, P. E., Endres, L. S., & Rohrer, C. E. (1989). U.S. Patent No. 4,872,397. Washington, DC: U.S. Patent and Trademark Office. [Google Scholar]
  8. Gao, C., Kuklane, K., Wang, F., & Holmér, I. (2012). Personal cooling with phase change materials to improve thermal comfort from a heat wave perspective. Indoor air, 22 (6), 523–530. [CrossRef] [PubMed] [Google Scholar]
  9. Comite’Europe’en de Normalisation, C. E. N. (2007). Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics. EN 15251. [Google Scholar]
  10. International Organization for Standardization. (2005). Ergonomics of the thermal environment: analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. International Organization for Standardization. [Google Scholar]
  11. Müller, D., Kandzia, C., Kosonen, R., Melikov, A. K., & Nielsen, P. V. (2013). Mixing Ventilation—Guide on mixing air distribution design, REHVA Guidebook No 19. Brussels: Federation of European Heating, Ventilation and Air Conditioning Associations Khalifa, H. E., Janos, M. I., & Dannenhoffer III, J.F. (2009). Experimental investigation of reduced-mixing personal ventilation jets. Building and Environment, 44 (8), 1551–1558. [CrossRef] [Google Scholar]
  12. Yuan, X., Chen, Q., & Glicksman, L. R. (1998). A critical review of displacement ventilation. ASHRAE transactions, 104, 78. Lee, C. K., Fong, K. F., Lin, Z., & Chow, T. T. (2013). Year-round energy saving potential of stratum ventilated classrooms with temperature and humidity control. HVAC&R Research, 19 (8), 986–991. [Google Scholar]
  13. Lin, Z., Chow, T. T., Fong, K. F., Tsang, C. F., & Wang, Q. (2005). Comparison of performances of displacement and mixing ventilations. Part II: indoor air quality. International journal of refrigeration, 28 (2), 288–305. [CrossRef] [Google Scholar]
  14. Lin, Z., Chow, T. T., Fong, K. F., Wang, Q., & Li, Y. (2005). Comparison of performances of displacement and mixing ventilations. Part I: thermal comfort. International journal of refrigeration, 28 (2), 276–287. [CrossRef] [Google Scholar]
  15. Lin, Z., Chow, T. T., Tsang, C. F., Fong, K. F., & Chan, L. S. (2009). Stratum ventilation–a potential solution to elevated indoor temperatures. Building and Environment, 44 (11), 2256–2269. [CrossRef] [Google Scholar]
  16. Tian, L., Lin, Z., Liu, J., Yao, T., & Wang, Q. (2011). The impact of temperature on mean local air age and thermal comfort in a stratum ventilated office. Building and environment, 46 (2), 501–510. [CrossRef] [Google Scholar]
  17. Tian, L., Lin, Z., & Wang, Q. (2011). Experimental investigation of thermal and ventilation performances of stratum ventilation. Building and Environment, 46 (6), 1309–1320. [CrossRef] [Google Scholar]
  18. Fong, M. L., Lin, Z., Fong, K. F., Chow, T. T., & Yao, T. (2011). Evaluation of thermal comfort conditions in a classroom with three ventilation methods. Indoor Air, 21 (3), 231–239. [CrossRef] [PubMed] [Google Scholar]
  19. Cheng, Y., Fong, M. L., Yao, T., Lin, Z., & Fong, K. F. (2014). Uniformity of stratum‐ventilated thermal environment and thermal sensation. Indoor Air, 24 (5), 521–532. [CrossRef] [PubMed] [Google Scholar]
  20. Cheng, Y., Lin, Z., & Fong, A. M. (2015). Effects of temperature and supply airflow rate on thermal comfort in a stratum-ventilated room. Building and Environment, 92, 269–277. [CrossRef] [Google Scholar]
  21. Lin, Z., Lee, C. K., Fong, S., Chow, T. T., Yao, T., & Chan, A. L. S. (2011). Comparison of annual energy performances with different ventilation methods for cooling. Energy and Buildings, 43 (1), 130–136. [CrossRef] [Google Scholar]
  22. Cao, G., Sirén, K., & Kilpeläinen, S. (2014). Modelling and experimental study of performance of the protected occupied zone ventilation. Energy and Buildings, 68, 515–531. [CrossRef] [Google Scholar]
  23. Lewis, H. E., Foster, A. R., Mullan, B. J., Cox, R. N., & Clark, R. P. (1969). Aerodynamics of the human microenvironment. The Lancet, 293 (7609), 1273–1277. [CrossRef] [Google Scholar]
  24. Clark, R. P., & Toy, N. (1975). Forced convection around the human head. The Journal of physiology, 244 (2), 295–302. [CrossRef] [PubMed] [Google Scholar]
  25. Melikov, A. K. (2015). Human body micro-environment: The benefits of controlling airflow interaction. Building and Environment, 91, 70–77. [CrossRef] [Google Scholar]
  26. Chang, S. K. W., & Gonzalez, R. R. (1993). Air velocity profiles around the human body. TRANSACTIONS-AMERICAN SOCIETY OF HEATING REFRIGERATING AND AIR CONDITIONING ENGINEERS, 99, 450–450. [Google Scholar]
  27. Homma, H. (1988). Examination of free convection around occupant’s body caused by its metabolic heat. ASHRAE Transactions, 94 (1), 104–124. [Google Scholar]
  28. Myers, J. B., Hosni, M. H., Jones, B. W., & Melikov, A. (1998). Interaction of air motion with the human body/Discussion. ASHRAE Transactions, 104, 863. [Google Scholar]
  29. Gan, G. (1994). Numerical method for a full assessment of indoor thermal comfort. Indoor Air, 4 (3), 154–168. [CrossRef] [Google Scholar]
  30. Kato, S. (1996). Numerical analysis of contaminant distribution around a human body. Roomvent’96, 7, 2, 129–136. [Google Scholar]
  31. Chang, S. K., & Gonzalez, R. R. (1989). Air velocity mapping of environmental test chambers (No. USARIEM-M65-89). ARMY RESEARCH INST OF ENVIRONMENTAL MEDICINE NATICK MA. [Google Scholar]
  32. Brohus, H. (1997). Personal exposure to contaminant sources in ventilated rooms (Doctoral dissertation, Department of Building Technology and Structural Engineering, Aalborg University). [Google Scholar]
  33. Hyun, S., & Kleinstreuer, C. (2001). Numerical simulation of mixed convection heat and mass transfer in a human inhalation test chamber. International journal of heat and mass transfer, 44 (12), 2247–2260 [CrossRef] [Google Scholar]
  34. Hayashi, T., Murakami, S., Kato, S., & Jeong-Hoon, Y. (2002). CFD analysis on rising stream around a human body and its effect on inhalation air quality. ASHRAE Transactions, 108, 1173. [Google Scholar]
  35. Cao, G., Nielsen, P. V., Jensen, R. L., Heiselberg, P., Liu, L., & Heikkinen, J. (2015). Protected zone ventilation and reduced personal exposure to airborne cross‐infection. Indoor Air, 25 (3), 307–319. [CrossRef] [PubMed] [Google Scholar]
  36. Melikov, A. K., Cermak, R., & Majer, M. (2002). Personalized ventilation: evaluation of different air terminal devices. Energy and buildings, 34 (8), 829–836. [Google Scholar]
  37. Cao, G., Sirén, K., & Kilpeläinen, S. (2014). Modelling and experimental study of performance of the protected occupied zone ventilation. Energy and Buildings, 68, 515–531. [CrossRef] [Google Scholar]
  38. Cao, G., Nielsen, P. V., Jensen, R. L., Heiselberg, P., Liu, L., & Heikkinen, J. (2015). Protected zone ventilation and reduced personal exposure to airborne cross‐infection. Indoor Air, 25 (3), 307–319. [CrossRef] [PubMed] [Google Scholar]
  39. Cao, G., Sirén, K., & Kilpeläinen, S. (2014). Modelling and experimental study of performance of the protected occupied zone ventilation. Energy and Buildings, 68, 515–531. [CrossRef] [Google Scholar]
  40. Melikov, A. K. (2004), Personalized ventilation. Indoor Air, 14: 157–167. [CrossRef] [PubMed] [Google Scholar]
  41. Melikov, A., Bolashikov, Z. D., & Georgiev, E. (2011). Novel ventilation strategy for reducing the risk of airborne cross infection in hospital rooms. Proceedings of Indoor Air 2011, 1037. [Google Scholar]
  42. Yang, J., Kaczmarczyk, J., Melikov, A. K., & Fanger, P. O. (2003). The impact of a personalized ventilation system on indoor air quality at different levels of room air temperature. In 7th International Conference on Healthy Buildings 2003 (pp. 345-350). Healthy Buildings 2003. [Google Scholar]
  43. Pan, C. S., Chiang, H. C., Yen, M. C., & Wang, C. C. (2005). Thermal comfort and energy saving of a personalized PFCU air-conditioning system. Energy and Buildings, 37 (5), 443–449. [CrossRef] [Google Scholar]
  44. Zhou, W., Tham, K.W. Performance of a desktop-mounted air terminal device for personalized ventilation system (2005) Proceedings of CLIMA 2005, pp. 370-376. [Google Scholar]
  45. Sekhar, S., Maheswaran, C., Nan, G., Cheong, D., Tham, K. W., Melikov, A. K., & Fanger, P. O. (2003). Energy efficiency potential of personalized ventilation system in the tropics. In 7th International Conference on Healthy Buildings 2003 (pp. 686-689). University of Singapore, Department of Buildings. [Google Scholar]
  46. Sun, W., Tham, K. W., Zhou, W., & Gong, N. (2007). Thermal performance of a personalized ventilation air terminal device at two different turbulence intensities. Building and environment, 42 (12), 3974–3983. [CrossRef] [Google Scholar]
  47. Tham, K. W., Sekhar, S. C., Cheong, D. K. W., & Gong, N. (2004). A case study of quantitative energy efficiency of personalized ventilation in the tropics. Proceedings of ROOMVENT 2004, 5–8. [Google Scholar]
  48. Niu, J. L. (2003). Potential IAQ and energy benefits achievable with personalized air supply. [Google Scholar]
  49. Gao, N. P., Niu, J. L., & Zuo, H. G. (2004). Ventilation efficiency of personalized ventilation: experimental study. [Google Scholar]
  50. Niu, J., Gao, N., Phoebe, M., & Huigang, Z. (2007). Experimental study on a chair-based personalized ventilation system. Building and Environment, 42 (2), 913–925. [CrossRef] [Google Scholar]
  51. Gao, N. P., & Niu, J. L. (2004). Ventilation efficiency of personalized Ventilation: CFD study. [Google Scholar]
  52. Kobayashi, N., & Chen, Q. (2003). Floor-supply displacement ventilation in a small office. Indoor and Built Environment, 12 (4), 281–291. [CrossRef] [Google Scholar]
  53. Halvoňová, B., & Melikov, A. K. (2010). Performance of “ductless” personalized ventilation in conjunction with displacement ventilation: Impact of intake height. Building and Environment, 45 (4), 996–1005. [CrossRef] [Google Scholar]
  54. Cermak, R., Melikov, A. K., Forejt, L., & Kovar, O. (2006). Performance of personalized ventilation in conjunction with mixing and displacement ventilation. Hvac&R Research, 12 (2), 295–311. [CrossRef] [Google Scholar]
  55. Melikov, A., Ivanova, T., & Stefanova, G. (2012). Seat headrest-incorporated personalized ventilation: Thermal comfort and inhaled air quality. Building and Environment, 47, 100–108. [CrossRef] [Google Scholar]
  56. Sekhar, S. C., Gong, N., Tham, K. W., Cheong, K. W., Melikov, A. K., Wyon, D. P., & Fanger, P. O. (2005). Findings of personalized ventilation studies in a hot and humid climate. HVAC&R Research, 11 (4), 603–620. [CrossRef] [Google Scholar]
  57. Yang, B., Sekhar, S. C., & Melikov, A. K. (2010). Ceiling‐mounted personalized ventilation system integrated with a secondary air distribution system–a human response study in hot and humid climate. Indoor Air, 20 (4), 309–319. [CrossRef] [PubMed] [Google Scholar]
  58. Faulkner, D., Fisk, W. J., & Sullivan, D. P. (1993). Indoor air flow and pollutant removal in a room with desk-top ventilation. [Google Scholar]
  59. Kaczmarczyk, J., Melikov, A., Bolashikov, Z., Nikolaev, L., & Fanger, P. O. (2006). Human response to five designs of personalized ventilation. HVAC&R Research, 12 (2), 367–384. [CrossRef] [Google Scholar]
  60. Li, R., Sekhar, S. C., & Melikov, A. K. (2010). Thermal comfort and IAQ assessment of under-floor air distribution system integrated with personalized ventilation in hot and humid climate. Building and Environment, 45 (9), 1906–1913. [CrossRef] [Google Scholar]
  61. Kaczmarczyk, J., Melikov, A., & Sliva, D. (2010). Effect of warm air supplied facially on occupants’ comfort. Building and Environment, 45 (4), 848–855. [CrossRef] [Google Scholar]
  62. Melikov, A. K., Skwarczynski, M. A., Kaczmarczyk, J., & Zabecky, J. (2013). Use of personalized ventilation for improving health, comfort, and performance at high room temperature and humidity. Indoor Air, 23 (3), 250–263. [CrossRef] [PubMed] [Google Scholar]
  63. Melikov, A. K., & Kaczmarczyk, J. (2012). Air movement and perceived air quality. Building and Environment, 47, 400–409. [CrossRef] [Google Scholar]
  64. Lyubenova, V. S., Holsøe, J. W., & Melikov, A. K. (2011). Potential energy savings with personalized ventilation coupled with passive chilled beams. In Roomvent-12th International Conference on Air Distribution in Rooms. [Google Scholar]
  65. Kaczmarczyk, J., Zeng, Q., Melikov, A., & Fanger, P. O. (2002). The effect of a personalized ventilation system on perceived air quality and SBS symptoms. Proceedings of indoor air, 4, 1042–1047. [Google Scholar]
  66. Faulkner, D., Fisk, W. J., Sullivan, D. P., & Wyon, D. P. (1999). Ventilation efficiencies of desk‐mounted task/ambient conditioning systems. Indoor air, 9 (4), 273–281. [CrossRef] [PubMed] [Google Scholar]
  67. Melikov, A. K., Cermak, R., Kovar, O., Forejt, L., Wai, T. K., Sakhar, S. C., & Cheong, D. (2003). Impact of airflow interaction on inhaled air quality and transport of contaminants in rooms with personalized and total volume ventilation. In 7th International Conference on Healthy Buildings 2003. Natiol University of Singapore, Department of Buildings. [Google Scholar]
  68. Zuo, H. G., Niu, J. L., & Chan, W. T. (2002). Experimental study of facial air supply method for the reduction of pollutant exposure. Proceedings of Indoor Air, 1090-1095. [Google Scholar]
  69. Cermak, R., & Melikov, A. K. (2003). Performance of personalized ventilation in a room with an underfloor air distribution system: transport of contaminants between occupants. In 7th International Conference on Healthy Buildings 2003 (pp. 486-491). NUS Press Pte Ltd. [Google Scholar]
  70. Cermak, R., & Melikov, A. K. (2004). Transmission of exhaled air between occupants in rooms with personalized and underfloor ventilation. Procedings of Roomvent 2004. [Google Scholar]
  71. Cermak, R., Melikov, A. K., Forejt, L., & Kovar, O. (2004). Distribution of contaminants in the occupied zone of a room with personalized and displacement ventilation. In 9th International Conference on Air Distribution in Rooms. University of Coimbra. [Google Scholar]
  72. Bolashikov, Z. D., Nikolaev, L., Melikov, A. K., Kaczmarczyk, J., & Fanger, P. O. (2003). Personalized ventilation: air terminal devices with high efficiency. In 7th International Conference on Healthy Buildings 2003 (pp. 850-855). Healthy Buildings 2003. [Google Scholar]
  73. Tsuzuki, K., Arens, E., Bauman, F., & Wyon, D. (1999). Individual thermal comfort control with desk-mounted and floor-mounted task/ambient conditioning (TAC) systems. [Google Scholar]
  74. Forejt, L., Melikov, A. K., Cermak, R., & Kovar, O. (2004). Thermal comfort of seated occupants in rooms with personalized ventilation combined with mixing or displacement ventilation. Procedings of Roomvent 2004. [Google Scholar]
  75. Veselý, M., & Zeiler, W. (2014). Personalized conditioning and its impact on thermal comfort and energy performance–A review. Renewable and Sustainable Energy Reviews, 34, 401–408. [CrossRef] [Google Scholar]
  76. Halvoňová, B., & Melikov, A. K. (2010). Performance of “ductless” personalized ventilation in conjunction with displacement ventilation: Impact of disturbances due to walking person (s). Building and Environment, 45 (2), 427–436. [CrossRef] [Google Scholar]
  77. Halvonová, B., & Melikov, A. K. (2010). Performance of ductless personalized ventilation in conjunction with displacement ventilation: impact of workstations layout and partitions. HVAC&R Research, 16 (1), 75–94. [CrossRef] [Google Scholar]
  78. Zeng, Q., Kaczmarczyk, J., Melikov, A. K., & Fanger, P. O. (2002). Perceived air quality and thermal sensation with personalised ventilation system. In Roomvent-8th International Conference on Air Distribution in Rooms (pp. 61-64). [Google Scholar]
  79. Kaczmarczyk, J., Zheng, Q., Melikov, A. K., & Fanger, P. O. (2002). Individual control and people’s preferences in experiments with personalized ventilation system. In Roomvent-8th International Conference on Air Distribution in Rooms (pp. 57-60). [Google Scholar]
  80. Yang, J., Melikov, A. K., Fanger, P. O., Li, X., & Yan, Q. (2002). Impact of personalized ventilation on human response: comparison between constant and fluctuating airflows under warm condition. In Roomvent-8th International Conference on Air Distribution in Rooms (pp. 305-308). [Google Scholar]
  81. Sun, W., Cheong, K. W. D., & Melikov, A. K. (2012). Subjective study of thermal acceptability of novel enhanced displacement ventilation system and implication of occupants’ personal control. Building and Environment, 57, 49–57. [CrossRef] [Google Scholar]
  82. Gao, N., & Niu, J. (2004). CFD study on micro-environment around human body and personalized ventilation. Building and Environment, 39 (7), 795–805. [CrossRef] [Google Scholar]
  83. de Dear, R. J., Arens, E., Hui, Z., & Oguro, M. (1997). Convective and radiative heat transfer coefficients for individual human body segments. International Journal of Biometeorology, 40 (3), 141–156. [Google Scholar]
  84. Faulkner, D., Fisk, W. J., Sullivan, D. P., & Lee, S. M. (2002). Ventilation efficiencies of a desk-edge-mounted task ventilation system. [CrossRef] [Google Scholar]
  85. Schiavon, S., & Melikov, A. K. (2009). Energy-saving strategies with personalized ventilation in cold climates. Energy and Buildings, 41 (5), 543–550. [CrossRef] [Google Scholar]
  86. Schiavon, S., Melikov, A. K., & Sekhar, C. (2010). Energy analysis of the personalized ventilation system in hot and humid climates. Energy and buildings, 42 (5), 699–707. [CrossRef] [Google Scholar]
  87. Conceição, E. Z., Lúcio, M. M. J., Rosa, S. P., Custódio, A. L., Andrade, R. L., & Meira, M. J. (2010). Evaluation of comfort level in desks equipped with two personalized ventilation systems in slightly warm environments. Building and Environment, 45 (3), 601–609. [CrossRef] [Google Scholar]
  88. Kaczmarczyk, J., Melikov, A. K., Bolashikov, Z., Nikolaev, L., & Fanger, P. O. (2004). Thermal sensation and comfort with five different air terminal devices for personalized ventilation. In Manuel Carlos Gameiro da Silva Roomvent 2004. [Google Scholar]
  89. Van Hoof, J. (2008), Forty years of Fanger’s model of thermal comfort: comfort for all?. Indoor Air, 18: 182–201. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.