Open Access
Issue
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
Article Number 04002
Number of page(s) 8
Section High Energy Performance and Sustainable Buildings, Simulation models and predictive tools for the buildings HVAC, IEQ and energy
DOI https://doi.org/10.1051/e3sconf/201911104002
Published online 13 August 2019
  1. P. Denholm and M. Hand, Grid flexibility andstorage required to achieve very high penetrationof variable renewable electricity, Energy Policy, vol. 39, no. 3, pp. 1817–1830, (2011). [CrossRef] [Google Scholar]
  2. P. D. Lund, J. Lindgren, J. Mikkola, and J.Salpakari, Review of energy system flexibilitymeasures to enable high levels of variablerenewable electricity, Renew. Sustain. Energy Rev., vol. 45, pp. 785–807, (2015). [CrossRef] [Google Scholar]
  3. European Commission, EU Reference Scenario2016 - Energy, transport and GHG emissions -Trends to 2050, Energy, transport and GHGemissions - Trends to 2050, (2016). Available: https://ec.europa.eu/energy/sites/ener/files/documents/ref2016_report_final-web.pdf. [Google Scholar]
  4. Ministry of Transport Building and Housing, Executive order on building regulations 2018(BR18), (2018). Available: http://bygningsreglementet.dk/~/media/Br/BR-English/BR18_Executive_order_on_building_regulations_2018.pdf. [Google Scholar]
  5. K. Foteinaki, A. Heller, and C. Rode, Modelingenergy flexibility of low energy buildingsutilizing thermal mass, Proceedings of IAQVEC, (2016). [Google Scholar]
  6. K. Foteinaki, R. Li, A. Heller, and C. Rode, Heating system energy flexibility of low-energyresidential buildings, Energy Build., vol. 180, pp. 95–108, (2018). [CrossRef] [Google Scholar]
  7. J. Kensby, A. Trüschel, and J.-O. Dalenbäck, Potential of residential buildings as thermalenergy storage in district heating systems – Results from a pilot test, Appl. Energy, vol. 137, pp. 773–781, (2015). [CrossRef] [Google Scholar]
  8. J. Le Dréau and P. Heiselberg, Energy flexibilityof residential buildings using short term heatstorage in the thermal mass, Energy, vol. 111, pp. 991–1002, (2016). [CrossRef] [Google Scholar]
  9. G. Masy, E. Georges, C. Verhelst, and V.Lemort, Smart grid energy flexible buildingsthrough the use of heat pumps and buildingthermal mass as energy storage in the Belgiancontext, Sci. Technol. Built Environ., vol. 4731, pp. 800–811, (2015). [CrossRef] [Google Scholar]
  10. G. Reynders, T. Nuytten, and D. Saelens, Potential of structural thermal mass for demand-side management in dwellings, Build. Environ., vol. 64, pp. 187–199, (2013). [CrossRef] [Google Scholar]
  11. G. Reynders, J. Diriken, and D. Saelens, Genericcharacterization method for energy flexibility:Applied to structural thermal storage inresidential buildings, Appl. Energy, vol. 198, pp. 192–202, (2017). [CrossRef] [Google Scholar]
  12. H. Wolisz, H. Harb, and P. Matthes, Dynamic simulation of thermal capacity andcharging/discharging performance for sensibleheat storage in building wall mass, Proceedingsof IBPSA, (2013). [Google Scholar]
  13. EnergyLab Nordhavn, EnergyLab Nordhavn –New Urban Energy Infrastructures, (2018). Available: http://energylabnordhavn.weebly.com/. [Google Scholar]
  14. ARKITEMA ARCHITECTS, Architectural drawings. Århus, Denmark, 2015. [Google Scholar]
  15. Technical University of Denmark (DTU) Climate Station, Department of Civil Engineering, Climate Data, (2018). Available: http://climatestationdata.byg.dtu.dk. [Google Scholar]
  16. EN/DS 15251, Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics, Dansk Stand., p. 54, (2007). [Google Scholar]
  17. J. Babiak, M. Minarova, and B. W. Olesen, What is the effective thickness of a thermally activated concrete slab?, Proceedings of ClLIMA, (2007). [Google Scholar]
  18. L. Sarran, M. H. Christensen, C. A. Hviid, A. M. Radoszynski, C. Rode, and P. Pinson, Data-driven study on individual occupant comfort using heating setpoints and window openings in new low-energy apartments – preliminary insights, CLIMA 2019 (accepted), (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.