Open Access
Issue
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
Article Number 04065
Number of page(s) 8
Section High Energy Performance and Sustainable Buildings, Simulation models and predictive tools for the buildings HVAC, IEQ and energy
DOI https://doi.org/10.1051/e3sconf/201911104065
Published online 13 August 2019
  1. G. John, D. Clements-Croome, G. Jeronimidis, “Sustainable building solutions: A review of lessons from the natural world,” Build. Environ., 40, no. 3 (2005) [Google Scholar]
  2. K. Miura, “The Analysis of a Thermal Storage System utilizing Building Mass in a Cold Region,” Proceedings Building simulation 2007. (2007) [Google Scholar]
  3. J. Karlsson, L. Wadsö, M. Öberg, “A conceptual model that simulates the influence of thermal inertia in building structures,” Energy Build., 60, (2013) [Google Scholar]
  4. P. Hoes, M. Trcka, J. L. M. Hensen, B. Hoekstra Bonnema, “Investigating the potential of a novel low-energy house concept with hybrid adaptable thermal storage,” Energy Convers. Manag., 52, 6, pp. 2442–2447 (2011) [CrossRef] [Google Scholar]
  5. S. Verbeke, A. Audenaert, “Thermal inertia in buildings: A review of impacts across climate and building use,” 82, no. 3, Renew. Sustain. Energy Rev., (2018) [Google Scholar]
  6. CEN, “EN ISO 13786: 2007, Thermal performance of building components - dynamic thermal characteristics - calculation method.” (2007) [Google Scholar]
  7. S. Attia, J. L. M. Hensen, L. Beltrán, A. De Herde, “Selection criteria for building performance simulation tools: contrasting architects’ and engineers’ needs,” J. Build. Perform. Simul., 5, no. 3, (2012) [Google Scholar]
  8. S. Petersen, S. Svendsen, “Method and simulation program informed decisions in the early stages of building design,” Energy Build., 42, no. 7, (2010) [Google Scholar]
  9. CEN, “EN ISO 52016-1:2017: Energy performance of buildings - Energy needs for heating and cooling, internal temperatures and sensible and latent heat loads -- Part 1: Calculation procedures.” (2017) [Google Scholar]
  10. P. C. Tabares-Velasco, C. Christensen, M. Bianchi, C. Booten, “Verification and Validation of EnergyPlus Conduction Finite Difference and Phase Change Material Models for Opaque Wall Assemblies,” Technical Report NREL/TP-5500-55792, Denver, Colorado, (2012) [Google Scholar]
  11. F. M. Butera, “Chapter 3 - Principles of thermal comfort, Politecnico di Milano,” Renew. Sustain. Energy Rev., 2, (1998) [Google Scholar]
  12. K. J. Lomas, S. M. Porritt, “Overheating in buildings: lessons from research,” Build. Res. Inf., 45, no. 1–2, (2017) [CrossRef] [Google Scholar]
  13. CEN. EN, “EN 12831: 2013 - Heating systems in buildings. Method for calculation of the design heat load.” EN ISO (2003) [Google Scholar]
  14. R. Yang, M. W. Newman, “Learning from a Learning Thermostat : Lessons for Intelligent Systems for the Home,” Proc. 2013 ACM Int. Jt. Conf. Pervasive ubiquitous Comput., (2013) [Google Scholar]
  15. T. Peffer, M. Pritoni, A. Meier, C. Aragon, D. Perry, “How people use thermostats in homes: A review,” Build. Environ., 46, no. 12 (2011) [Google Scholar]
  16. A. Meier et al., “How People Actually Use Thermostats,” Control. Inf. Technol., (2010) [Google Scholar]
  17. G. Reynders, T. Nuytten, D. Saelens, “Potential of structural thermal mass for demand-side management in dwellings,” Build. Environ., 64, (2013) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.