Open Access
Issue
E3S Web Conf.
Volume 113, 2019
SUPEHR19 SUstainable PolyEnergy generation and HaRvesting Volume 1
Article Number 01014
Number of page(s) 9
Section Sustainable Power Plants
DOI https://doi.org/10.1051/e3sconf/201911301014
Published online 21 August 2019
  1. B. Koçak, H. Paksoy, Using demolition wastes from urban regeneration as sensible thermal energy storage material, International Journal of Energy Research, In press. [Google Scholar]
  2. A. Elouali, T. Kousksou, T. El Rhafiki, S. Hamdaoui, M. Mahdaouic, A. Allouhi, Y. Zeraouli, Physical models for packed bed: Sensible heat storage systems, Journal of Energy Storage 23 69–78 (2019) [CrossRef] [Google Scholar]
  3. A. Buscemi, D. Panno, G. Ciulla, M. Beccali, V. Lo Brano, Concrete thermal energy storage for linear Fresnel collectors: Exploiting the South Mediterranean’s solar potential for agri-food processes, Energy Conversion and Management 166 719–734 (2018) [Google Scholar]
  4. R. Tiskatine, R. Oaddi, R. Ait El Cadi, A. Bazgaou, L. Bouirden, A. Aharoune, A. Ihlal, Suitability and characteristics of rocks for sensible heat storage in CSP plants, Solar Energy Materials and Solar Cells Volume 169, 245–257 (2017) [CrossRef] [Google Scholar]
  5. M. Khan, N. M. S. Hassan, A. K. Azad, Investigation of thermal energy storage systems in concentrated solar power, Energy Procedia 160, 738–745, (2019) [Google Scholar]
  6. R. Lugolole, A. Mawire, K.A. Lentswe, D. Okello, K. Nyeinga, Thermal performance comparison of three sensible heat thermal energy storage systems during charging cycles, Sustainable Energy Technologies and Assessments 30, 37–51, (2018) [CrossRef] [Google Scholar]
  7. K. Bataineh, A. Gharaibeh, Optimal design for sensible thermal energy storage tank using natural solid materials for a parabolic trough power plant, Solar Energy 171, 519–525, (2018) [CrossRef] [Google Scholar]
  8. B. Zhao, M. Cheng, C. Liu, Z. Dai, An efficient tank size estimation strategy for packed-bed thermocline, thermal energy storage systems for concentrated solar power, Solar Energy 153, 104–114, (2017) [CrossRef] [Google Scholar]
  9. B. Rahul Nandi, S. Bandyopadhyay, R. Banerjee, Numerical modeling and analysis of dual medium thermocline thermal energy storage, Journal of Energy Storage 16, 218–230, (2018) [CrossRef] [Google Scholar]
  10. A. Bruch, J.F. Fourmigue and R. Couturier, “Experimental and numerical investigation of a pilot-scale thermal oil packed bed thermal storage system for CSP power plant”, Solar Energy, 105, 116–125, (2014) [CrossRef] [Google Scholar]
  11. K.A.R. Ismail, R. StuginskyJr., “A parametric study on possible fixed bed models for pcm and sensible heat storage”, Applied Thermal Engineering, 19, 757–788, (1999) [Google Scholar]
  12. A. Mawire, M. McPherson, R.R.J. van den Heetkamp and S.J.P. Mlatho, “Simulated performance of storage materials for pebble bed thermal energy storage (TES) systems”, Applied Energy, 86, 1246–1252, (2009) [Google Scholar]
  13. A. Bruch, S. Molina, T. Esence, J.F. Fourmigu and R. Couturier, “Experimental investigation of cycling behaviour of pilot-scale thermal oil packed-bed thermal storage system”, Renewable Energy, 103, 277–285, (2017) [Google Scholar]
  14. J. Marti, L. Geissbühler, V. Becattini, A. Haselbacher and Aldo Steinfeld, “Constrained multi-objective optimization of thermocline packed-bed thermal-energy storage”, Applied Energy, 216, 694–708, (2018) [Google Scholar]
  15. Y. Jemmal, N. Zari, M. Maaroufi, “Thermophysical and chemical analysis of gneiss rock as low cost candidate material for thermal energy storage in concentrated solar power plants”, Solar Energy Materials & Solar Cells, 157, 377–382 (2016). [CrossRef] [Google Scholar]
  16. M. Cascetta, G. Cau, P. Puddu, F. Serra, “A study of a packed bed thermal energy storage device: test rig, experimental and numerical results”, Energy Procedia, 81, 987–994, (2015). [Google Scholar]
  17. R. Tiskatine, A. Aharoune, L. Bouirden, A. Ihlal, “Identification of suitable storage materials for solar thermal power plant using selection methodology”, Applied Thermal Engineering, 117, 591–608, (2017). [Google Scholar]
  18. F. Motte, Q. Falcoz, E. Veron, X. Py, “Compatibility tests between Solar Salt and thermal storage ceramics from inorganic industrial wastes”, Applied Energy, 155, 14–22, (2015). [Google Scholar]
  19. L. Prasad and P. Muthukumar, “Design and optimization of lab-scale sensible heat storage prototype for solar thermal power plant application”, Solar Energy, 97, 217–229, (2013). [CrossRef] [Google Scholar]
  20. B. Cardenas, T. R. Davenne, J. Wang, Y. Ding, Y. Jin, H. Chen, Y. Wu and S. D. Garvey, “Techno-economic optimization of a packed-bed utility-scale energy storage”, Applied Thermal Engineering, 153, 206–220, (2019). [Google Scholar]
  21. D. Gibb, M. Johnson, J. Romaní, J. Gasia, L.F. Cabeza, A. Seitz, “Process integration of thermal energy storage systems – evaluation methodology and case studies”, Applied Energy, 230, 750–760, (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.