Open Access
Issue
E3S Web Conf.
Volume 114, 2019
International Conference of Young Scientists “Energy Systems Research 2019”
Article Number 05005
Number of page(s) 7
Section Renewable Energy
DOI https://doi.org/10.1051/e3sconf/201911405005
Published online 04 September 2019
  1. REN21, RENEWABLES 2018 GLOBAL STATUS REPORT. 2018: Paris. [Google Scholar]
  2. Rossijskaya Federaciya. Energeticheskaya strategiya Rossii na period do 2030 goda. 2009. [Google Scholar]
  3. Dunikov, D.O., Russia’s view on development of novel and renewable energy sources, including hydrogen energy. International Journal of Hydrogen Energy, 2015. 40(4): p. 2062–2063. [Google Scholar]
  4. Zoulias, E.I. and N. Lymberopoulos, Hydrogen-based autonomous power systems: techno-economic analysis of the integration of hydrogen in autonomous power systems. 2008: Springer. [Google Scholar]
  5. Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications. 2010, Weinheim, Germany: WILEY-VCH Verlag GmbH. 877. [Google Scholar]
  6. Malyshenko S.P. Vodorod kak akkumulyator energii v elektroenergetike. Rossiyskiy khimicheskiy zhurnal, 2005. XLI: p. 112-120. [Google Scholar]
  7. da Rosa, A, Vozobnovlyaemiye istochniki energii. Fiziko-tekhnicheskie osnovy : uchebnoe posobie. 2010, М.: Izdatelskiy dom MEI. 704. [Google Scholar]
  8. Tzamalis, G., et al., Techno-economic analysis of an autonomous power system integrating hydrogen technology as energy storage medium. Renewable Energy, 2011. 36(1): p. 118–124. [Google Scholar]
  9. Kim, D.-H., et al., Experience of a pilot-scale hydrogen-producing anaerobic sequencing batch reactor (ASBR) treating food waste. International Journal of Hydrogen Energy, 2010. 35(4): p. 1590–1594. [Google Scholar]
  10. La Licata, B., et al., Bio-hydrogen production from organic wastes in a pilot plant reactor and its use in a SOFC. International Journal of Hydrogen Energy, 2011. 36(13): p. 7861–7865. [Google Scholar]
  11. Morra, S., et al., Expression of different types of [FeFe]-hydrogenase genes in bacteria isolated from a population of a bio-hydrogen pilot-scale plant. International Journal of Hydrogen Energy, 2014. 39(17): p. 9018–9027. [Google Scholar]
  12. Malyshenko S.P. Nazarova O.V., Akkumulirovanie vodoroda, Atomno-vodorodnaya energetika i tekhnologiya. Vol. 8. 1988, Energoatomizdat: М. p. 155. [Google Scholar]
  13. Verbetsky, V.N., et al., Metal hydrides: properties and practical applications. Review of the works in CIS-countries. International Journal of Hydrogen Energy, 1998. 23(12): p. 1165-1177. [Google Scholar]
  14. Kolachev B.A., Shalin R.E., Ilyin A.A., Splavy-nakopiteli vodoroda. 1995, М.: Metallurgiya. 384. [Google Scholar]
  15. Tarasov B.P., et al., Metody khraneniya vodoroda i vozmozhnosti ispol’zovaniya metallogidridov. Al’ternativnaya energetika i ekologiya, 2005. 12: p. 14–37. [Google Scholar]
  16. Srinivasan, S.S. and D.E. Demirocak, Metal Hydrides used for Hydrogen Storage, in Nanostructured Materials for Next-Generation Energy Storage and Conversion: Hydrogen Production, Storage, and Utilization, Y.-P. Chen, S. Bashir, and J.L. Liu, Editors. 2017, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 225-255. [Google Scholar]
  17. Sandrock, G., A panoramic overview of hydrogen storage alloys from a gas reaction point of view. Journal of Alloys and Compounds, 1999. 293-295: p. 877-888. [Google Scholar]
  18. Kubo, K., Y. Kawaharazaki, and H. Itoh, Development of large MH tank system for renewable energy storage. International Journal of Hydrogen Energy, 2017. 42(35): p. 22475–22479. [Google Scholar]
  19. Lototskyy, M., et al., Metal hydride hydrogen storage tank for fuel cell utility vehicles. International Journal of Hydrogen Energy, 2019. [Google Scholar]
  20. Rabienataj Darzi, A.A., et al., Absorption and desorption of hydrogen in long metal hydride tank equipped with phase change material jacket. International Journal of Hydrogen Energy, 2016. 41(22): p. 9595–9610. [Google Scholar]
  21. Capurso, G., et al., Development of a modular room-temperature hydride storage system for vehicular applications. Applied Physics A, 2016. 122(3): p. 236. [CrossRef] [Google Scholar]
  22. Yartys, V.A., et al., Metal hydride hydrogen compression: recent advances and future prospects. Applied Physics A, 2016. 122(4): p. 415. [CrossRef] [Google Scholar]
  23. Lototskyy, M.V., et al., Metal hydride hydrogen compressors: A review. International Journal of Hydrogen Energy, 2014. 39(11): p. 5818–5851. [Google Scholar]
  24. Burheim, O.S., Chapter 5 - Thermomechanical Energy Storage, in Engineering Energy Storage, O.S. Burheim, Editor. 2017, Academic Press. p. 63-73. [Google Scholar]
  25. Hu, X.-c., et al., A 38 MPa compressor based on metal hydrides. Journal of Shanghai Jiaotong University (Science), 2012. 17(1): p. 53-57. [Google Scholar]
  26. Lototskyy, M., et al., Thermally Driven Metal Hydride Hydrogen Compressor for Medium-Scale Applications. Energy Procedia, 2012. 29(0): p. 347–356. [Google Scholar]
  27. Tarasov, B.P., et al., Cycling stability of RNi5 (R = La, La+Ce) hydrides during the operation of metal hydride hydrogen compressor. International Journal of Hydrogen Energy, 2018. 43(9): p. 4415–4427. [Google Scholar]
  28. Li, H., et al., A study on 70MPa metal hydride hydrogen compressor. Journal of Alloys and Compounds, 2010. 502(2): p. 503–507. [Google Scholar]
  29. Chen, X.Y., et al., A Review on the Metal Hydride Based Hydrogen Purification and Separation Technology. Applied Mechanics and Materials, 2014. 448-453: p. 3027-3036. [Google Scholar]
  30. Modibane, K.D., et al., Poisoning-tolerant metal hydride materials and their application for hydrogen separation from CO2/CO containing gas mixtures. International Journal of Hydrogen Energy, 2013. 38(23): p. 9800–9810. [Google Scholar]
  31. Lototskyy, M., et al., Application of surface-modified metal hydrides for hydrogen separation from gas mixtures containing carbon dioxide and monoxide. Journal of Alloys and Compounds, 2013. 580, Supplement 1(0): p. S382-S385. [Google Scholar]
  32. Kazakov A.N., Dunikov D.O., Borzenko V.I., Razrabotka metodiki izgotovleniya i issledovaniya obraztsov intermetallicheskikh soedineniy dlya sistem khraneniya i ochistki vodoroda. Vestnik MEI, 2014. 3: p. 16–20. [Google Scholar]
  33. Senoh, H., et al., Systematic investigation on hydrogen storage properties of RNi5 (R: rare earth) intermetallic compounds with multi-plateau. Materials Science and Engineering: B, 2004. 108(1-2): p. 96–99. [CrossRef] [Google Scholar]
  34. Dimanta, I., et al., Metal hydride alloys for storing hydrogen produced by anaerobic bacterial fermentation. International Journal of Hydrogen Energy, 2016. 41(22): p. 9394–9401. [Google Scholar]
  35. Miura, S., et al., A hydrogen purification and storage system using CO adsorbent and metal hydride. Journal of Alloys and Compounds, 2013. 580, Supplement 1(0): p. S414-S417. [Google Scholar]
  36. Miura, S., A. Fujisawa, and M. Ishida, A hydrogen purification and storage system using metal hydride. International Journal of Hydrogen Energy, 2012. 37(3): p. 2794–2799. [Google Scholar]
  37. Miura, S., A hydrogen purification and storage system using metal hydride for DSS operations. 19th World Hydrogen Energy Conference 2012, 2012. [Google Scholar]
  38. Lototsky, M.V., et al., Surface-modified advanced hydrogen storage alloys for hydrogen separation and purification. Journal of Alloys and Compounds, 2011. In Press, Corrected Proof. [Google Scholar]
  39. Sun, Y.M. and S. Suda, Studies on the fluorination method for improving surface properties and characteristics of AB5-types of hydrides. Journal of Alloys and Compounds, 2002. 330–332: p. 627-631. [Google Scholar]
  40. Wang, X.L., K. Iwata, and S. Suda, Hydrogen purification using fluorinated LaNi4.7Al0.3 alloy. Journal of Alloys and Compounds, 1995. 231(1–2): p. 860-864. [Google Scholar]
  41. Dunikov, D., et al., Biohydrogen purification using metal hydride technologies. International Journal of Hydrogen Energy, 2016. 41(46): p. 21787–21794. [Google Scholar]
  42. Liu, C.-M., et al., Biohydrogen production from rice straw hydrolyzate in a continuously external circulating bioreactor. International Journal of Hydrogen Energy, 2014. 39(33): p. 19317–19322. [Google Scholar]
  43. Liu, C.-M., et al., Biohydrogen production evaluation from rice straw hydrolysate by concentrated acid pre-treatment in both batch and continuous systems. International Journal of Hydrogen Energy, 2013. 38(35): p. 15823–15829. [Google Scholar]
  44. Sakintuna, B., F. Lamari-Darkrim, and M. Hirscher, Metal hydride materials for solid hydrogen storage: A review. International Journal of Hydrogen Energy, 2007. 32(9): p. 1121–1140. [Google Scholar]
  45. Lynch, F.E., Metal hydride practical applications. Journal of the Less Common Metals, 1991. 172–174, Part 3(0): p. 943-958. [CrossRef] [Google Scholar]
  46. Huston, E.L. and G.D. Sandrock, Engineering properties of metal hydrides. Journal of the Less Common Metals, 1980. 74(2): p. 435–443. [CrossRef] [Google Scholar]
  47. Yang, F.S., et al., Design of the metal hydride reactors – A review on the key technical issues. International Journal of Hydrogen Energy, 2010. 35(8): p. 3832–3840. [Google Scholar]
  48. Malyshenko, S.P., et al., Metal hydride technologies of hydrogen energy storage for independent power supply systems constructed on the basis of renewable sources of energy. Thermal Engineering, 2012. 59(6): p. 468–478. [CrossRef] [Google Scholar]
  49. Dunikov, D., V. Borzenko, and S. Malyshenko, Influence of impurities on hydrogen absorption in a metal hydride reactor. International Journal of Hydrogen Energy, 2012. 37(18): p. 13843–13848. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.