Open Access
E3S Web Conf.
Volume 119, 2019
Science and the Future 2 “Contradictions and Challenges”
Article Number 00003
Number of page(s) 18
Published online 27 September 2019
  1. W. Haas, F. Krausmann, D. Wiedenhofer, M. Heinz, An Assessment of Material Flows, Waste Production, and Recycling in the European Union and the World in 2005, Journal of Industrial Ecology , 19, 765–777 (2015) . [Google Scholar]
  2. W. Stahel, The circular economy, Nature 531, 435–438 (2016) . [CrossRef] [PubMed] [Google Scholar]
  3. J. Korhonen, A. Honkasalo, J. Seppälä, Circular Economy: The Concept and its Limitations, Ecological Economics, 143, 37–46 (2018) . [CrossRef] [Google Scholar]
  4. UNEP, Global waste management outlook (2015) [Online]. Available: [Access date: 27th April 2019]. [Google Scholar]
  5. W.P. Cunningham, M.A. Cunningham, B. Woodworth Saigo, Fondamenti di ecologia McGraw-Hill, 360 pp. (2007) [Google Scholar]
  6. L. Lebreton, A. Andrady, Future scenarios of global plastic waste generation and disposal, Palgrave Communications, 5, (2019). [CrossRef] [PubMed] [Google Scholar]
  7. Y. Geng, J. Sarkis, R. Bleischwitz, How to globalize the circular economy, Nature, 565, 153–155 (2019) . [CrossRef] [PubMed] [Google Scholar]
  8. P. Geddes, Cities in Evolution, Williams & Norgate, London, pp. 265 (1915) . [Google Scholar]
  9. W. Stephen, Think Global, Act Local: The Life and Legacy of Patrick Geddes, Luath Press Limited, Edinburgh, pp. 140 (2015) . [Google Scholar]
  10. Drew, 2016 [Google Scholar]
  11. M.T. Brown, and S. Ulgiati, Understanding the global economic crisis: A biophysical perspective, Ecol. Modell, 223, 4–13 (2011) . [Google Scholar]
  12. M.T. Brown, and S. Ulgiati, The Tertiary Economy: A Threat to the Global Economy. In: Energy Security and Development. The Global Context and Indian Perspectives. Edited by Sudhakara B. Reddy and Sergio Ulgiati. Springer, India, 307–319 (2015) . [Google Scholar]
  13. Ellen MacArthur Foundation, Towards the circular economy (2012) [Online]. Available: [Access date: 10th September 2013]. [Google Scholar]
  14. A. Wijkman, K. Skånberg, The Circular Economy and Benefits for Society. An interim report by the Club of Rome with support from the MAVA Foundation and the Swedish Association of Recycling Industries [Online]. Available: [Access date: 27th April 2019]. [Google Scholar]
  15. P. Ghisellini, C. Cialani, S. Ulgiati, A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J Clean Prod, 114, 11–32 (2016) . [Google Scholar]
  16. W.W Clark II, Sustainable Communities. Springer Science+Business Media, New York, 314 pp. (2010) [Google Scholar]
  17. G. Charonis, Degrowth, Steady state economics and the circular economy: three distinct yet increasingly converging alternative discourses to economic growth for achieving environmental sustainability and social equity, World Economic Association Sustainability Conference 2012 [Online]. Available: [Access date: 19th October 2013]. [Google Scholar]
  18. V. Castellani, S. Sala, N. Mirabella, Beyond the throwaway society: a life cycle-based assessment of the environmental benefit of reuse. Integr. Environ. Assess. Manag. 11, (3), 373–382 (2015) . [CrossRef] [PubMed] [Google Scholar]
  19. K. Hornsby, M. Ripa, C. Vassillo, S. Ulgiati, A roadmap towards integrated assessment and participatory strategies in support of decisionmaking processes. The case of urban waste management. J Clean Prod, 142, 157–172 (2017) . [Google Scholar]
  20. K. Hornsby, N. Head, E. Ploumistou, S. Ulgiati, Cross-Cultural Assessments and Stakeholder Consultancy towards Resource Waste Reduction and Climate Change Prevention. SOJ Symbiosis Online Journal - Psichology, 1–22 (2017) . [Google Scholar]
  21. G. Pauli, The Blue Economy: 10 years, 100 Innovations. 100 Million Jobs, Paradigm Publications, New Mexico, (2010) . [Google Scholar]
  22. G. Pauli, The Blue Economy [Online]. Available: [Access date: 23rd August 2018]. [Google Scholar]
  23. D. Ness, Sustainable urban infrastructure in China: Towards a Factor 10 improvement in resource productivity through integrated infrastructure system. International Journal of Sustainable Development & World Ecology, 15, 288–301 (2008). [Google Scholar]
  24. EC, European Commission, MEMO, Questions and answers on the Commission Communication “Towards a Circular Economy” and the Waste Targets Review (2014) [Online]. Available: [Access date: 11 July 2014]. [Google Scholar]
  25. EC, European Commission, Communication from the Commission to the European Parliament, The Council, The European Economic and Social Committee and the Committee of the Regions. Towards a circular economy: a zero waste programme for Europe, COM (2014) 398. [Google Scholar]
  26. U. Mazzantini, Rivoluzione a Davos, il big business mondiale vuole l'economia circolare [Online]. Available: [Access date: 10 February 2014] . [Google Scholar]
  27. J.J. Park, M. Chertow, Establishing and testing the “reuse potential” indicator for managing wastes as resources. J. Environ. Account. Manage, 137, 45–53 (2014) . [CrossRef] [Google Scholar]
  28. Y. Geng, J. Fu, J. Sarkis, B. Xue, Towards a circular economy indicator system in China: an evaluation and critical analysis. J Clean Prod, 23, 216–224 (2012) . [Google Scholar]
  29. UNEP, The Japanese Industrial Waste Experience: Lessons for rapidly industrializing countries (2013) [Online]. Available: [Access date: 5 May 2015]. [Google Scholar]
  30. D. Whaugray, Davos 2013: circular economy offers opportunities for Latin America, The Guardian [Online]. Available: [Access date: 24 August 2013]. [Google Scholar]
  31. C. Stiehl, T. Hirth, Vom additiven Umweltschutz zur nachhaltigen Produktion. Chemie Ingenieur Technik 84, 963–968 (2012) . [CrossRef] [Google Scholar]
  32. Z. Yuan, J. Bi, Y. Moriguichi, The Circular Economy; A New Development Strategy in China. Journal of Industrial Ecology 10, 4–8 (2006) . [Google Scholar]
  33. N.U. Yap, Towards a circular economy: progress and challenges. Green Management International 50, 11–24 (2005) . [Google Scholar]
  34. M.S. Andersen, An introductory note on the environmental economics of the circular economy. Sustainability Science 2, 133–140 (2007) . [Google Scholar]
  35. F. Zhijun, Y. Nailing, Putting a circular economy into practice in China. Sustainable Science 2, 95–101 (2007) . [CrossRef] [Google Scholar]
  36. F. Preston, 2012. A Global Redesign? Shaping the Circular Economy. Briefing Paper. [Online]. Available:,%20Environment%20and%20Development/bp0312_preston.pdf [Access date: 22 August 2013]. [Google Scholar]
  37. J. Naustdalslid, J. Circular economy in China - the environmental dimension of the harmonioussociety. International Journal of Sustainable Development & World Ecology, 21:4, 303–313 (2014) . [CrossRef] [Google Scholar]
  38. S. Prendeville, C. Sanders, J. Sherry, F. Costa, Circular Economy: is it enough? [Online]. Available: [Access date: 10 luly 2014]. [Google Scholar]
  39. CCICED, Circular Economy Promotion Law of the People's Republic of China [Online]. Available: [Access date: 27 April 2019]. [Google Scholar]
  40. Y. Geng, J. Sarkis, S. Ulgiati, Sustainability, wellbeing, and the circular economy in China and worldwide. Science, special issue “Pushing the Boundaries of Scientific Research: 120 Years of Addressing Global Issues”, pp. 73–76 (2016) . [Google Scholar]
  41. Y. Fang, P.R. Cote, Q. Rong, Industrial sustainability in China: Practice and prospects for eco-industrial development. J. Environ.Account. Manage. 83, 315–328 (2007) . [CrossRef] [Google Scholar]
  42. U. Mazzantini, La Cina divora materie prime:secondo l'ONU è il piu grande consumatore mondiale [Online]. Available: [Access date: 24 September 2013]. [Google Scholar]
  43. B. Su, A. Heshmati, Y. Geng, X. Yu, A review of the circular economy in China: moving from rethoric to implementation. J Clean Prod, 42, 215–277 (2013). [Google Scholar]
  44. UNEP, Resource efficiency: Economics and Outlook for China [Online]. Available: [Access date: 24 September 2013]. [Google Scholar]
  45. Y. Geng, B. Doberstein, Developing the circular economy in China: challenges and opportunities forachieving “leapfrog development”. International Journal of Sustainable Development and World Ecology 15, 231–239 (2008). [CrossRef] [Google Scholar]
  46. J.A. Mathews, H. Tan, Progress towards a circular economy: the drivers and inhibitors of Eco-industrial initiative. Journal of Industrial Ecology 15, 435– 457 (2011). [Google Scholar]
  47. Europesworld, The circular economy is the basis of a new industrial policy [2014) [Online]. Available: [Access date: 11 March 2015]-. [Google Scholar]
  48. Ghisellini, P., Ripa, M., Ulgiati, S., Exploring environmental and economic costs and benefits of a circular economy approach to construction and demolition materials. J Clean Prod, 178, 618–643 (2018) . [Google Scholar]
  49. EU, Circular Economy [Online]. Available : [Access date: 10 October 2018]. [Google Scholar]
  50. EU, Towards a circular economy [Online]. Available : [Access date: 10 October 2018]. [Google Scholar]
  51. The World Bank, From What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050[Online]. Available: [Access date: 27 April 2019]. [Google Scholar]
  52. UNEP, United Nations Environment Programme (2015) [Online]. Available: [Access date: 24/07/2019]. [Google Scholar]
  53. H. Park, Municipal Solid Waste Incineration in Japan, Submitted as coursework for PH240, Stanford University, Fall 2018 [Online]. Available: [Access date: 27 April 2019]. [Google Scholar]
  54. Ministry of the Environment of Japan, Solid Waste Management and Recycling Technology of Japan. Toward a Sustainable Society [Online]. Available: [Access date: 27 April 2019]. [Google Scholar]
  55. I. Bello, M.N.B. Ismail, N. Kabbashi, Solid Waste Management in Africa: A Review. International Journal Waste Resources 6, 1–4 (2016). [Google Scholar]
  56. J.E.M. Oteng-Ababio, O. Arguello, Gabbay, Solid waste management in African cities: Sorting the facts from the fads in Accra, Ghana. Habitat International 39, 96–104 (2013). [Google Scholar]
  57. M.M. Mian, X. Zeng, A.A.N.B. Nasry, S.M.Z.F. Al-Hamadani, Municipal solid waste management in China: a comparative analysis. Journal of Material Cycles and Waste Management 19(3) (2016) . [Google Scholar]
  58. S.K. Ghosh, B. Debnath, R. Baidya, D. De, J. Li, S. Kumar Ghosh, L. Zheng, M. Kumar Awasthi, M.A. Liubarskaia, J.S. Ogola, A.N. Tavares, Waste electric and electronic equipment management and Basel Convention compliance in Brazil, Russia, India, China and South Africa (BRICS) nations. Waste Management & Research 34, 8, 693–707 (2016). [CrossRef] [Google Scholar]
  59. UNEP, Waste management in ASEAN countries, report (2017) [Online]. Available: [Access date: 27 April 2019 [Google Scholar]
  60. Eurostat, Glossary: Municipal waste [Online]. Available: [Access date: 27 April 2019]. [Google Scholar]
  61. Eurostat, Municipal waste by waste management operations (2017) [Online]. Available: [Access date: 28 April 2019]. [Google Scholar]
  62. Eurostat, Municipal waste statistics (2019) [Online]. Available: [Access date: 24 July 2019]. [Google Scholar]
  63. Eurostat, Municipal waste landfilled, incinerated, recycled and composted in the EU-28, 1995 to 2017 [Online]. Available: [Access date: 28 April 2019]. [Google Scholar]
  64. European Commission, Circular Economy; Implementation of the Circular Economy Action Plan (2019) [Online]. Available:[Access date: 27 April 2019]. [Google Scholar]
  65. European Commission, Waste (2019) [Online]. Available: [Access date: 28 April 2019]. [Google Scholar]
  66. ISPRA, Municipal Waster Report (2018) [Online]. Available: [Access date: 28 April 2019]. [Google Scholar]
  67. EPA, Environmental Protection Agency July 2018 [Online]. Available: [Access date: 25 July 2019]. [Google Scholar]
  68. J.P.A. Hettiaratchi, New trends in wastemanagement: North American perspective. Proceedings of the International Conference on Sustainable Solid Waste Management, 5–7 September 2007, Chennai, India, pp. 9–14. (2007). [Google Scholar]
  69. H. Hettiarachchi, S. Ryu, S. Caucci, R. Silva, Municipal solid waste management in Latin America and the Caribbean: Issues and potential solutions from the governance perspective. Recycling 3, 19, 1–15 (2018). [CrossRef] [Google Scholar]
  70. K. Drew, Hero Waste: How does San Francisco do it? and, What's next?, Presentation given at the Environmental Forum of Marin, San Rafael, March 2013 [Online]. Available: [Access date: 28 April 2019]. [Google Scholar]
  71. L. Evans, Lessons from Kalundborg. Bus Environ, 6(1), 51 (1995). [Google Scholar]
  72. J. Ehrenfeld, N. Gertler, Industrial ecology in practice: the evolution of interdependence at Kalundborg. J Ind Ecol; 1(1), 67–79 (1997). [Google Scholar]
  73. Ellen MacArthur Foundation, The circular model - brief history and school of thought [Online]. Available: [Access date: 10 October 2013]. [Google Scholar]
  74. EU, Circular Economy Package (2018) [Online]. Available: [Access date: 27 April 2019]. [Google Scholar]
  75. WEF, Circular Economy in Cities: Evolving the model for a sustainable urban future (2018) [Online]. Available: [Access date: 27 April 2019]. [Google Scholar]
  76. H. Schnitzer, S. Ulgiati, Less bad is not good enough. J Clean Prod, 15, 1185–1189 (2007). [Google Scholar]
  77. H. Schnitzer, S. Ulgiati, Special Issue on “Zero Emission Techniques and Strategies”. J Clean Prod, 15, 209 (2007). [Google Scholar]
  78. M. Mirata, T. Emtairah, Industrial symbiosis networks and the contribution to environmental innovation: The case of the Landskrona industrial symbiosis programme. J Clean Prod, 13, 993–1002 (2005). [Google Scholar]
  79. P. Ghisellini, X. Ji, G.Y. Liu, S. Ulgiati, Evaluating the transition towards cleaner production in the construction and demolition sector of China: A review. J Clean Prod, 195, 418–434 (2018) [Google Scholar]
  80. A. Marion, Chinese eco-cities: The implementation of a new economic model? [Online]. Available: [Access date: 15 October 2013]. [Google Scholar]
  81. EU-ASIA, Eco-cities. Sharing European and Asian Best Practices and Experiences (2014) [Online]. Available: [Access date: 19 March 2015]. [Google Scholar]
  82. Y. Geng, Q. Zhu, B. Doberstein, T. Fujita, Implementing China's circular economy concept at regional level: a review of progress in Dalian, China. Waste Management, 29, 996–1002 (2009). [CrossRef] [Google Scholar]
  83. Ramsar, The Ramsar Convention on Wetlands. Background and Context to the Development of Principles and Guidance for the Planning and Management of Urban and Peri-urban Wetlands (COP11 DR11) [Online]. Available: [Access date: 13 August 2014]. [Google Scholar]
  84. Zerowaste Europe, Closing the loop of materials,Phasing out Toxics & Emissions. Our Network (2014) [Online]. Available: [Access date: 22 July 2015]. [Google Scholar]
  85. N. Matete, C. Trois, Towards Zero Waste in emerging countries - A South African experience. Waste Management 28, 1480–1492 (2008). [CrossRef] [Google Scholar]
  86. A.U. Zaman, S. Lehmann, The zero waste index: a performance measurement tool for waste management systems in a “zero waste city”. J Clean Prod, 50, 123–132 (2013). [Google Scholar]
  87. EU, Official Journal of EU, L 354/171 DecisionNo 1386/2013/EU of the European Parliament and of The Council of 20 november 2013 on a General Union Environment Programme to 2020 “Living well within the limits of our Planet” [Online]. Available: [Access date: 23 August 2014]. [Google Scholar]
  88. EC, Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste. Official Journal of the European Communities, L182/1 (1999). [Google Scholar]
  89. MARSS, Material Advanced Recovery Sustainable Systems (2015) [Online]. Available:[Access date : 30 April 2019]. [Google Scholar]
  90. G. Fiorentino, M. Ripa, G. Protano, C. Hornsbv, S. Ulgiati, Life Cycle Assessment of Mixed Municipal Solid Waste: Multi-input versus multi-output perspective. Waste Management, 46, 599–611. (2015) [CrossRef] [Google Scholar]
  91. M. Ripa, G. Fiorentino, H. Giani, A. Clausen, S. Ulgiati, Refuse recovered biomass fuel from municipal solid waste. A life cycle assessment. Applied Energy, 186(2), 211–225 (2017). [Google Scholar]
  92. M. Ripa, G. Fiorentino, V. Vacca, S. Ulgiati, The relevance of site-specific data in Life Cycle Assessment (LCA). The case of the municipal solid waste management in the metropolitan city of Naples (Italy), J Clean Prod, 142, 445–460 (2017). [Google Scholar]
  93. M. Ripa, C. Buonaurio, S. Mellino, G. Fiorentino, S. Ulgiati, Recycling Waste Cooking Oil into Biodiesel: A Life Cycle Assessment. International Journal of Performabilitv Engineering 10, (4): 347356 (2014). [Google Scholar]
  94. EU, Waste electrical & electronic equipment (WEEE) [Online]. Available: [Access date: 24 July 2019]. [Google Scholar]
  95. RE-BIT, Decolla il progetto RE-BIT [Online]. Available: [Access date: 30 September 2015]. [Google Scholar]
  96. A. Puca, M. Carrano, G. Liu, D. Musella, M. Ripa, S. Viglia, S. Ulgiati, Energy and eMergy assessment of the production and operation of a personal computer, Resour Conserv Recycl 116, 124–136 (2017). [Google Scholar]
  97. F. Corcelli, M. Ripa, E. Leccisi, V. Cigolotti, V. Fiandra, G. Graditi, L. Sannino, M. Tammaro, S. Ulgiati, Sustainable urban electricity supply chain - Indicators of material recovery and energy savings from crystalline silicon photovoltaic panels end-of-life . Ecol. Indic., 94, 37–51 (2018). [Google Scholar]
  98. F. Corcelli, M. Ripa, S. Ulgiati, Efficiency and sustainability indicators for papermaking from virgin pulp. An emergy-based case study. Resour Conserv Recycl, 131, 313–328 (2018). [Google Scholar]
  99. R. Santagata, M. Ripa, S. Ulgiati, An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems. Applied Energy, 186, 175–188 (2017). [Google Scholar]
  100. R. Santagata, S. Viglia, G. Fiorentino, G.Y. Liu, M. Ripa, Power generation from slaughterhouse waste materials. An emergy accounting assessment. J Clean Prod, 223, 536–552 (2019). [Google Scholar]
  101. K. Jayathilakan, K. Sultana, K. Radhakrishna, A.S. Bawa, Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review. J Food Sci Technol 49, 278–93 (2012). [CrossRef] [PubMed] [Google Scholar]
  102. K.H. Kettl, K. Shahzad, M. Eder, M. Narodoslawsky, Ecological footprint comparison of biobased PHA production from animal residues. Chem Eng Trans 29, 439–44 (2012). [Google Scholar]
  103. M. Giampietro, S. Ulgiati, D. Pimentel, Feasibility of large-scale biofuel production. Does an enlargement of scale change the picture? BioScience, 47(9), 587–600 (1997). [Google Scholar]
  104. M. Giampietro, S. Ulgiati, Integrated assessment of large scale biofuel production. Critical Reviews in Plant Sciences, 24, 365–384 (2005). [Google Scholar]
  105. D. Pimentel, Biofuels, Solar and Wind as Renewable Energy Systems. Springer Science + Business Media B.V. (2008). [CrossRef] [Google Scholar]
  106. S. Fahd, S. Mellino, S. Ulgiati, Energy Cropping in Marginal Land: Viable Option or Fairie Tale? In: D. Pimentel (Editor), Global Economic and Environmental Aspects of Biofuels, Taylor & Francis Group Publisher. Chapter 3. Pp. 51–96. (2012). [CrossRef] [Google Scholar]
  107. F. Cherubini, S. Ulgiati, Crop residues as raw materials for biorefinery systems - A LCA case study. Applied Energy, 87(1), 47–57 (2010). [Google Scholar]
  108. G. Fiorentino, M. Ripa, S. Mellino, S. Fahd, S. Ulgiati, Life cycle assessment of Brassica carinata biomass conversion to bioenergy and platform chemicals. J Clean Prod, 66, 174–187 (2014). [Google Scholar]
  109. G. Fiorentino, M. Ripa, S. Ulgiati, Chemicals from Biomass: Technological versus Environmental Feasibility. A Review. Biofuels Bioprod Biorefining 11, 195–214 (2017). [CrossRef] [Google Scholar]
  110. G. Fiorentino, A. Zucaro, S. Ulgiati, Towards an energy efficient chemistry. Switching from fossil to bio-based products in a life cycle perspective. Energy, 170, 720–729 (2019). [CrossRef] [Google Scholar]
  111. E. Buonocore, P.P. Franzese, S. Ulgiati, Assessing the environmental performance and sustainability of bioenergy production in Sweden: A life cycle assessment perspective. Energy, 37, 69–78 (2012). [CrossRef] [Google Scholar]
  112. S. Ulgiati, M. Raugei, S. Bargigli, Overcoming the inadequacy of single-criterion approaches to life cycle assessment. Ecol. Modell, 190, 432–42 (2006). [Google Scholar]
  113. S. Ulgiati, M. Ascione, S. Bargigli, F. Cherubini, P.P. Franzese, M. Raugei, S. Viglia, A. Zucaro, Material, Energy and Environmental Performance of Technological and Social Systems under a Life Cycle Assessment Perspective. Ecol. Modell, 222, (1): 176–189 (2011). [Google Scholar]
  114. A. Zucaro, G. Fiorentino S. Ulgiati, Constraints, impacts and benefits of lignocellulose conversion pathways to liquid biofuels and bio-chemicals. In: Yousuf A., Sannino F., Pirozzi D. (eds) Lignocellulosic Biomass to Liquid Biofuels, 1st Edition. Elsevier. Academic Press. In press. (ISBN: 9780128159361). [Google Scholar]
  115. E. Buonocore, S. Mellino, G. De Angelis, G. Liu, S. Ulgiati, Life cycle assessment indicators of urban wastewater and sewage sludge treatment. Ecological Indicators, 94, 13–23 (2018). [Google Scholar]
  116. V.W.Y. Tam, Comparing the implementation of concrete recycling in the Australian and Japanese construction industries. J Clean Prod, 17, 688–702 (2009). [Google Scholar]
  117. H. Dahlbo, J. Bacher, K. Lahtinen, T. Jouttijarvi, P. Suoheimo, T. Mattila, S. Sironen, T. Myllymaa, K. Saramaki, Construction and demolition waste management and a holistic evaluation of environmental performance. J Clean Prod 107, 333–341 (2015). [Google Scholar]
  118. R.V. Silva, J. De Brito, R.K. Dhir, Availability and processing of recycled aggregates within the construction and demolition supply chain: a review. J Clean Prod, 143, 598–614 (2017). [Google Scholar]
  119. A. Wijkman, K. Skånberg, Club of Rome, The Circular Economy and Benefits for Society: Swedish Case Study Shows Jobs and Climate as Clear Winners. An Interim Report by the Club of Rome with Support from the MAVA Foundation and the Swedish Association of Recycling Industries (2015). [Google Scholar]
  120. N. Tosic, S. Marinkovic, T. Dasic, M. Stanic, Multicriteria optimization of natural and recycled aggregate concrete for structural use. J Clean Prod, 87, 766–776 (2015). [Google Scholar]
  121. W. Lu, H. Yuan, Exploring critical success factors for M.waste management in construction projects of China. Resour. Conserv. Recycl. 55, 201–208 (2010). [Google Scholar]
  122. M. Gangolells, M. Casals, N. Forcada, M. Macarulla, Analysis of the implementation of effective waste management practices in construction projects and sites. Resour Conserv Recycl. 93, 99–111 (2014). [Google Scholar]
  123. A. Jurgilevich, T. Birge, J. Kentala-Lehtonen, K. Korhonen-Kurki, J. Pietikainen, L. Saikku, H. Schosler, Transition towards Circular Economy in the Food System. Sustainability, 8, (69), 1–14 (2015). [Google Scholar]
  124. L.O. Oydele, S.O. Ajayi, K.O. Kadiri, Use of recycled products in UK construction industry: an empirical investigation into critical impediments and strategies for improvement, Resour Conserv Recycl. 93, 23–31 (2014). [Google Scholar]
  125. S.O. Ajayi, O.O. Lukumon, M. Bilal, O.O. Akinade, H.A. Alaka, H.A. Owolabi, K.O. Kadiri, Waste effectiveness of the construction industry: understanding the impediments and requisites for improvements. Resour Conserv Recycl. 102, 101112 (2015). [Google Scholar]
  126. S. Bimonte S. Ulgiati, Economic Institutions and Environmental Policy, Ashgate, Aldershot, UK, 177–200 (2002). [Google Scholar]
  127. P. Barnes, Capitalism 3.0-A guide to Reclaiming the Commons Berret-Koehler Publishers, San Francisco, USA (2006). [Google Scholar]
  128. H.T. Odum. Environmental Accounting Emergy and Environmental Decision Making. John Wiley & Sons, Inc. (1996). [Google Scholar]
  129. Brownown, M.T., Ulgiati, S., Emergy analysis and environmental accounting. In: Cleveland, C. (Ed.), Encyclopedia of Energy. Academic Press, Elsevier, Oxford, UK, pp. 329–354 (2004). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.