Open Access
Issue |
E3S Web Conf.
Volume 121, 2019
I International Conference “Corrosion in the Oil and Gas Industry”
|
|
---|---|---|
Article Number | 01016 | |
Number of page(s) | 5 | |
Section | Corrosion Monitoring | |
DOI | https://doi.org/10.1051/e3sconf/201912101016 | |
Published online | 14 October 2019 |
- Toupin R.A., Bernstein B. Sound waves in deformed perfectly elastic materials. Acoustoelastic effect, JASA 33, 2, 216-225 (1961) [CrossRef] [Google Scholar]
- Benson R.W., Raelson V.J. From ultrasonics to a new stress-analysis technique, Prod. Eng. 30, 29, 56-59 (1959) [Google Scholar]
- Hughes D.S., Kelly J.L. Second-order elastic deformation of solids, Phys.Rev. 92, 5, 1145-1159 (1953) [CrossRef] [Google Scholar]
- GOST R 52890-2007. Non-destructive testing. Evaluation of stresses in material of pipelines by ultrasound method. General requirements [Google Scholar]
- Nikitina N.E. Acoustoelasticity. Experience of practical application, Talam (2005) [Google Scholar]
- Kamyshev A.V., Nikitina N.E., Smirnov V.A. Measurement of the residual stresses in the treads of railway wheels by the acoustoelasticity method, RJNDT 46, 3, 189-193 (2010) [Google Scholar]
- Nikitina N.E., Kamyshev A.V., Kazachek S.V. The application of the acoustoelasticity method for the determination of stresses in anisotropic pipe steels, RJNDT 51, 3, 171-178 (2015) [Google Scholar]
- Kamyshev A.V. et al. Generalized coefficients for measuring mechanical stresses in carbon and low-alloyed steels by the acoustoelasticity method, RJNDT 53, 1, 1-8 (2017) [Google Scholar]
- Kamyshev A.V. et al. Use of acoustic anisotropy parameter for the analysis of damage accumulation in the area of SW111 during production and operation of steam generators PGV-1000, Isdatel’stvo AO OKB GIDROPRESS (2015) [Google Scholar]
- Hirao M., Pao Y.H. Dependence of acoustoelastic birefringence on plastic strains in a beam, JASA 77, 5, 1659-1664 (1985) [CrossRef] [Google Scholar]
- Pao Y.H. Theory of acoustoelasticity and acoustoplasticity, Springer-Dordrecht, 257-273 (1987) [Google Scholar]
- Pao Y.H., Wu T.T., Gamer U. Acoustoelastic birefringences in plastically deformed solids: Part I—Theory, J. Appl. Mech. 58, 1, 11-17 (1991) [Google Scholar]
- Murnaghan F.D. Finite deformations of an elastic solid, Am. J. Math. 59, 2, 235-260 (1937) [CrossRef] [Google Scholar]
- Wu T.T., Hirao M., Pao Y.H. Acoustoelastic Birefringences in Plastically Deformed Solids: Part II—Experiment, J. Appl. Mech. 58, 1, 18-23 (1991) [Google Scholar]
- Kobayashi M. Theoretical study of acoustoelastic effects caused by plastic anisotropy growth, Int. J. Plasticity 3, 1, 1-20 (1987) [CrossRef] [Google Scholar]
- Kobayashi M. Ultrasonic nondestructive evaluation of microstructural changes of solid materials under plastic deformation—Part I. Theory, Int. J. Plasticity 14, 6, 511-522 (1998) [CrossRef] [Google Scholar]
- Kobayashi M. Ultrasonic nondestructive evaluation of microstructural changes of solid materials under plastic deformation—Part II. Experiment and simulation, Int. J. Plasticity 14, 6, 523-535 (1998) [CrossRef] [Google Scholar]
- Ghosh S., Li M., Gardiner D. A computational and experimental study of cold rolling of aluminum alloys with edge cracking, J. Manuf. Sci. Eng. 126, 1, 74-82 (2004) [Google Scholar]
- O’Neill B., Maev R.G. Acousto-elastic measurement of the fatigue damage in Waspaloy, RNDE 17, 3, 121-135 (2006) [Google Scholar]
- Riedel H. et al. The formation of edge cracks during rolling of metal sheet, Steel Res. Int. 78, 10-11, 818-824 (2007) [CrossRef] [Google Scholar]
- Semenov A.S. et al. Effect of Surface Layer Damage on Acoustic Anisotropy, JAMT 59, 6, 1136-1144 (2018) [Google Scholar]
- Belyaev A.K. et al. Estimating the plastic strain with the use of acoustic anisotropy, Mech.Sol 51, 5, 606-611 (2016) [Google Scholar]
- Belyaev A.K. et al. Propagation of sound waves in stressed elasto-plastic material, IEEE (DD) 56-61 (2016) [Google Scholar]
- Semenov A.S. Symmetrization of the effective stress tensor for anisotropic damaged continua, SPb Phys Math J 3, 3, 271-283 (2017) [Google Scholar]
- Grishchenko A.I. et al. Experimental investigation of the acoustic anisotropy field in the specimen with a stress concentrator, SPb Phys Math J 3, 1, 77-82 (2017) [Google Scholar]
- Belyaev A.K. et al. Investigation of the correlation between acoustic anisotropy, damage and measures of the stress-strain state, PROSTR 6, 201-207 (2017) [Google Scholar]
- Belchenko V.K. et al. An estimation of the strain-stress state under cyclic loading by the acoustoelasticity method, SPb Phys Math J 3, 1, 71-76 (2017) [Google Scholar]
- Alekseeva E.L. et al. A study of hydrogen cracking in metals by the acoustoelasticity method, AIP Publishing 1915, 1, 030001 (2017) [Google Scholar]
- Khrustalev Y.A. et al. Formation of hydrogen under the metal friction, R.J.Phys.Ch. 63, 5, 1355-1357 (1989) [Google Scholar]
- Gorsky W.S. Theorie der ordnungsprozesse und der diffusion in mischkristallen von CuAu, Sow.Phys. 8, 443-456 (1935) [Google Scholar]
- Konar J., Banerjee N.G. Vacuum heating hydrogen determination in aluminium and aluminium alloys, NML Tech. J. 16, 1-2, 18-19 (1974) [Google Scholar]
- Sayi Y. et al. Determination of H2 and D2 content in metals and alloys using hot vacuum extraction, JRNC 230, 1-2, 5-9 (1998) [Google Scholar]
- Belyaev A.K.et al. Multichannel diffusion vs TDS model on example of energy spectra of bound hydrogenin 34CrNiMo6 steel after a typical heat treatment, IJHE 41, 20, 8627-8634 (2016) [Google Scholar]
- Toda H. et al. Healing behavior of preexisting hydrogen micropores in aluminum alloys during plastic deformation, Acta Mater. 57, 15, 4391-4403 (2009) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.