Open Access
Issue
E3S Web Conf.
Volume 123, 2019
Ukrainian School of Mining Engineering - 2019
Article Number 01003
Number of page(s) 14
DOI https://doi.org/10.1051/e3sconf/201912301003
Published online 22 October 2019
  1. Lozynskyi, V., Saik, P., Petlovanyi, M., Sai, K., Malanchuk, Z., & Malanchuk, Y. (2018). Substantiation into mass and heat balance for underground coal gasification in faulting zones. Inzynieria Mineralna, 19(2), 289-300. https://doi.org/10.29227/IM-2018-02-36 [Google Scholar]
  2. Bondarenko, V., Lozynskyi, V., Sai, K., & Anikushyna, K. (2015). An overview and prospectives of practical application of the biomass gasification technology in Ukraine. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 27-32. https://doi.org/10.1201/b19901-6 [CrossRef] [Google Scholar]
  3. Bondarenko, V.I., Kharin, Ye.N., Antoshchenko, N.I., & Gasyuk, R.L. (2013). Basic scientific positions of forecast of the dynamics of methane release when mining the gas bearing coal seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 24-30. [Google Scholar]
  4. Petlovanyi, M., Kuzmenko, O., Lozynskyi, V., Popovych, V., & Sai, K. (2019). Review of man-made mineral formations accumulation and prospects of their developing in mining industrial regions in Ukraine. Mining of Mineral Deposits, 13(1), 24-38. https://doi.org/10.33271/mining13.01.024 [CrossRef] [Google Scholar]
  5. Bondarenko, V., Maksymova, E., & Koval, O. (2013). Genetic classification of gas hydrates deposits types by geologic-structural criteria. Annual Scientific-Technical Colletion - Mining of Mineral Deposits, 115-119. https://doi.org/10.1201/b16354-21 [CrossRef] [Google Scholar]
  6. Makogon, Y.F., & Makogon, T.Y., (n.d.). Natural gas hydrates. Exploration and Production of Petroleum and Natural Gas, 429-459. https://doi.org/10.1520/mnl7320140017 [Google Scholar]
  7. Carroll, J. (2014). Hydrate types and formers. Natural Gas Hydrates, 23-57. https://doi.org/10.1016/b978-0-12-800074-8.00002-8 [CrossRef] [Google Scholar]
  8. Boswell, R. (2009). Is gas hydrate energy within reach? Science, 325(5943), 957-958. https://doi.org/10.1126/science.1175074 [Google Scholar]
  9. Bondarenko, V., Svietkina, O., & Sai, K., (2017). Study of the formation mechanism of gas hydrates of methane in the presence of surface-active substances. Eastern-European Journal of Enterprise Technologies, 5(6(89)), 48-55. https://doi.org/10.15587/1729-4061.2017.112313 [CrossRef] [Google Scholar]
  10. Bhatia, K.H., & Chacko, L.P., (2011). A novel approach to recover hydrates using Ni-Fe nanoparticles. SPE EUROPEC/EAGE Annual Conference and Exhibition. https://doi.org/10.2118/143088-ms [Google Scholar]
  11. Bondarenko, V., Svietkina, O., Sai, K., & Klymenko, V. (2018). Investigation of the influence of polyelectrolytes hydrodynamic properties on the hydrateformation process. E3S Web of Conferences, (60), 00007. https://doi.org/10.1051/e3sconf/20186000007 [Google Scholar]
  12. Vorob’yev, A.E., (2018) Dissociation of gas hydrates in frozen sands: effect on gas. Earth’s Cryosphere, (1). https://doi.org/10.21782/ec2541-9994-2018-1(41-45) [Google Scholar]
  13. Vorob’yev, A.E., (2016). Prospects of nanotechnologies of developing gaseous-hydrate resources of the Russian Arctic shelf. Vestnik MGTU, 19(1/1), 70-81. http://doi.org/10.21443/1560-9278-2016-1/1-70-81 [CrossRef] [Google Scholar]
  14. Bondarenko, V.I., & Sai, K.S. (2018). Process pattern of heterogeneous gas hydrate deposits dissociation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 21-28. http://doi.org/10.29202/nvngu/2018-2/4 [CrossRef] [Google Scholar]
  15. Ganushevych, K., Sai, K., & Korotkova, A. (2014). Creation of gas hydrates from mine methane. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 505-509. http://doi.org/10.1201/b17547-85 [CrossRef] [Google Scholar]
  16. Franchuk, V.P., (1995). Opredelenie temperatury v zone nagruzheniya pri vibroudarnom nagruzhenii. Teoriya i praktika protsessov izmel’cheniya i razdeleniya, 15-23. [Google Scholar]
  17. Franchuk, V.P., (2010). Vibratsionnaya tekhnika v malykh proizvodstvakh. Heotekhnichna Mekhanika, (85), 290-296. [Google Scholar]
  18. Svietkina, O., Bas, K., Alfaqs, F., Ziborov, K., & Fedoskin, V. (2019). Mechanochemical Activation of Materials to Produce Conductive and Superconductive Substances for Batteries. Solid State Phenomena, (291), 121-130. https://doi.org/10.4028/www.scientific.net/ssp.291.121 [CrossRef] [Google Scholar]
  19. Svietkina, O. (2013). Receipt of coagulant of water treatment from radio-active elements. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 227-230. https://doi.org/10.1201/b16354-42 [CrossRef] [Google Scholar]
  20. Korsakov, V.G., Shelomentseva, I.V., Yur’yevskaya, I.M., & Petrova, L.I., (1983). Issledovanie energeticheskikh kharakteristik i prognozirovanie fiziko-khimicheskikh i tekhnicheskikh svoystv materialov. Napravlennyy Sintez Tverdykh veshchestv, (1), 158-174. [Google Scholar]
  21. Bondarenko, V., Svietkina, O., & Sai, K., (2018). Effect of mechanoactivated chemical additives on the process of gas hydrate formation. Eastern-European Journal of Enterprise Technologies, 1(6(91)), 17-26. https://doi.org/10.15587/1729-4061.2018.123885 [CrossRef] [Google Scholar]
  22. Ovchynnikov, M., Ganushevych, K., & Sai, K. (2013). Methodology of gas hydrates formation from gaseous mixtures of various compositions. Annual Scientific-Technical Colletion - Mining of Mineral Deposits, 203-205. https://doi.org/10.1201/b16354-37 [CrossRef] [Google Scholar]
  23. Bondarenko, V., Ganushevych, K., Sai, K., & Tyshchenko, A. (2011). Development of gas hydrates in the Black sea. Technical and Geoinformational Systems in Mining: School of Underground Mining, 55-59. https://doi.org/10.1201/b11586-11 [CrossRef] [Google Scholar]
  24. Bondarenko, V., Kovalevska, I., Astafiev, D., & Malova, O. (2018). Examination of phase transition of mine methane to gas hydrates and their sudden failure – Percy Bridgman’s Effect. Solid State Phenomena, (277), 137-146. https://doi.org/10.4028/www.scientific.net/ssp.277.137 [CrossRef] [Google Scholar]
  25. Li, S., Han, Z., Meng, Q., Zhao, X., Cao, X., & Liu, B., (2018). Effect of WC nanoparticles on the microstructure and properties of WC-bronze-Ni-Mn based diamond composites. Applied Sciences, 8(9), 1501. https://doi.org/10.3390/app8091501 [CrossRef] [Google Scholar]
  26. Khomutov, G.B., & Koksharov, Y.A., (n.d.). Organized ensembles of magnetic nanoparticles: preparation, structure, and properties. Magnetic Nanoparticles, 117-195. https://doi.org/10.1002/9783527627561.ch5 [Google Scholar]
  27. Zhuang, S., Lee, E. S., Lei, L., Nunna, B. B., Kuang, L., & Zhang, W. (2016). Synthesis of nitrogen-doped graphene catalyst by high-energy wet ball milling for electrochemical systems. International Journal of Energy Research, 40(15), 2136-2149. https://doi.org/10.1002/er.3595 [CrossRef] [Google Scholar]
  28. Sun, Y., Yu, Y., Wu, B., & Liu, B., (2016). Closed form solutions for nonlinear static response of curled cantilever micro-/nanobeams including both the fringing field and van der Waals force effect. Microsystem Technologies, 23(1), 163-174. https://doi.org/10.1007/s00542-016-2870-y [CrossRef] [Google Scholar]
  29. Sun, Y., Meng, Q., Qian, M., Liu, B., Gao, K., Ma, Y., & Zheng, W. (2016). Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles. Scientific Reports, 6(1). https://doi.org/10.1038/srep20198 [Google Scholar]
  30. Sai, K., Malanchuk, Z., Petlovanyi, M., Saik, P., & Lozynskyi, V. (2019). Research of Thermodynamic Conditions for Gas Hydrates Formation from Methane in the Coal Mines. Solid State Phenomena, (291), 155-172. https://doi.org/10.4028/www.scientific.net/SSP.291.155 [CrossRef] [Google Scholar]
  31. Gao, K., Li, M., Dong, B., Sun, Y., & Liu, J. (2014). Bionic coupling polycrystalline diamond composite bit. Petroleum Exploration and Development, 41(4), 533-537. https://doi.org/10.1016/s1876-3804(14)60063-x [CrossRef] [Google Scholar]
  32. Dishlyuk, L., Novoselova, M., & Rozalyonok, T. (2013). Immobilization of chymotrypsin on magnetic Fe3O4 nanoparticles. Foods and Raw Materials, 1(2), 85-88. https://doi.org/10.12737/2060 [CrossRef] [Google Scholar]
  33. Bondarenko, V., Sai, K., Prokopenko, K., & Zhuravlov, D. (2018). Thermodynamic and geomechanical processes research in the development of gas hydrate deposits in the conditions of the Black Sea. Mining of Mineral Deposits, 12(2), 104-115. https://doi.org/10.15407/mining12.02.104 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.