Open Access
E3S Web Conf.
Volume 123, 2019
Ukrainian School of Mining Engineering - 2019
Article Number 01035
Number of page(s) 10
Published online 22 October 2019
  1. Petlovanyi, M., Kuzmenko, O., Lozynskyi, V., Popovych, V., Sai, K., & Saik, P. (2019). Review of man-made mineral formations accumulation and prospects of their developing in mining industrial regions in Ukraine. Mining of Mineral Deposits, 13(1), 24-38. [CrossRef] [Google Scholar]
  2. Karabyn, V., Shtain, B., & Popovych, V. (2018). Thermal regimes of spontaneous firing coal washing waste sites. News of the National Academy of Sciences of the Republic of Kazakhstan. Series of Geology and Technical Sciences, 3(429), 64-74. [Google Scholar]
  3. Afeni, T.B., & Ibitolu, F. (2018). Assessment of environmental impact of gemstone mining in Ijero-Ekiti, Nigeria. Mining of Mineral Deposits, 12(1), 1-11. [CrossRef] [Google Scholar]
  4. Kalybekov, T., Rysbekov, K.B., Toktarov, A.A., Otarbaev, O.M. (2019). Underground mine planning with regard to preparedness of mineral reserves. Mining Informational and Analytical Bulletin, (5), 34-43. [CrossRef] [Google Scholar]
  5. Popovych, V., Stepova, K., & Prydatko, O. (2018). Environmental hazard of Novoyavorivsk municipal landfill. MATEC Web of Conferences, (247), 00025. [CrossRef] [EDP Sciences] [Google Scholar]
  6. Petlovanyi, M.V., & Medianyk, V.Y. (2018). Assessment of coal mine waste dumps development priority. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 28-35. [CrossRef] [Google Scholar]
  7. Popovich, V.V. (2016). Phytomeliorative recovery in reduction of multi-element anomalies influence ofdevastated landscapes. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6(1), 94-114. [CrossRef] [Google Scholar]
  8. Popovych, V., Kuzmenko, O., Voloshchyshyn, A., & Petlovanyi, M. (2018). Influence of man-made edaphotopes of the spoil heap on biota. E3S Web of Conferences, (60), 00010. [CrossRef] [EDP Sciences] [Google Scholar]
  9. Markowicz, A., Wozniak, G., Borymski, S. et al. (2015). Links in the functional diversity between soil microorganisms and plant communities during natural succession in coal mine spoil heaps. Ecological Research, (30), 1005-1014. [CrossRef] [Google Scholar]
  10. Dryzhenko, A., Moldabayev, S., Shustov, A., Adamchuk, A., & Sarybayev, N. (2017). Open pit mining technology of steep-ly dipping mineral occurences by steeply inclined sublayers. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 17(13), 599-606. [Google Scholar]
  11. Cherniaiev, O.V. (2017). Systematization of the hard rock non-metallic mineral deposits for improvement of their mining technologies. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 11-17. [Google Scholar]
  12. Topper, K.F., & Sabey, B.R. (1986). Sewage Sludge as a Coal Mine Spoil Amendment for Revegetation in Colorado1. Journal of Enviromental. Quality, (15), 44-49.doi: https://10.2134/jeq1986.00472425001500010010x [CrossRef] [Google Scholar]
  13. Rybicka, E.H. (1996). Impact of mining and metallurgical industries on the environment in Poland. Applied Geochemistry, 11(1-2), 3-9. [CrossRef] [Google Scholar]
  14. Sterritt, R.M., & Lester, J.N. (1979). The microbiological control of mine waste pollution. Minerals and Environment, 1(2), 45-47. [CrossRef] [Google Scholar]
  15. Tiwary, R.K. (2001). Environmental Impact of Coal Mining on Water Regime and Its Management. Water, Air, & Soil Pollution, 132(1-2), 185-199. [CrossRef] [Google Scholar]
  16. Zhang, L., Wang, J., Bai, Z., & Lv, C. (2015). Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area. Catena, (128), 44-53. [CrossRef] [Google Scholar]
  17. Neiva, A.M.R., Antunes, I.M.H.R., Carvalho, P.C.S., & Santos, A.C.T. (2016). Uranium and arsenic contamination in the former Mondego Sul uranium mine area, Central Portugal. Journal of Geochemical Exploration, (162), 1-15. [CrossRef] [Google Scholar]
  18. Sarmiento, A.M., Nieto, J.M., Olías, M., & Cánovas, C.R. (2009). Hydrochemical characteristics and seasonal influence on the pollution by acid mine drainage in the Odiel river Basin (SW Spain). Applied Geochemistry, 24(4), 697-714. [CrossRef] [Google Scholar]
  19. Nieto, J.M., Sarmiento, A.M., Olías, M., Cánovas, C.R., Riba, I., Kalman, J., & Delvalls, T.A. (2007). Acid mine drainage pollution in the Tinto and Odiel rivers (Iberian Pyrite Belt, SW Spain) and bioavailability of the transported metals to the Huelva Estuary. Environment International, 33(4). 445-455. [CrossRef] [PubMed] [Google Scholar]
  20. Tutu, H., McCarthy, T.S., & Cukrowska, E. (2008). The chemical characteristics of acid mine drainage with particular reference to sources, distribution and remediation: The Witwatersrand Basin, South Africa as a case study. Applied Geochemistry, 23(12), 3666-3684. [CrossRef] [Google Scholar]
  21. Naicker, K., Cukrowska, E., & McCarthy, T.S. (2003). Acid mine drainage arising from gold mining activity in Johannesburg, South Africa and environs. Environmental Pollution, 122(1). 29-40. [CrossRef] [Google Scholar]
  22. Zeng, B., Zhang, Z.X., & Yang, M. (2018). Risk assessment of groundwater with multi-source pollution by a long-term monitoring programme for a large mining area. International Biodeterioration & Biodegradation, (128), 100-108. [CrossRef] [Google Scholar]
  23. Haidin, A.M., & Sobko, B.Yu. (2018). Hidroekolohiia pry hirnychykh robotakh. Dnipro: Litohraf. [Google Scholar]
  24. Klimkina, I., Kharytonov, M., & Zhukov, O. (2018). Trend Analysis of Water-Soluble Salts Vertical Migration in Technogenic Edaphotops of Reclaimed Mine Dumps in Western Donbass (Ukraine). Journal of Environmental Research, Engineering and Management, 74(2), 82-93. [Google Scholar]
  25. Chetveryk, M., Bubnova, O., Babii, K., Shevchenko, O., & Moldabaev, S. (2018). Review of geomechanical problems of accumulation and reduction of mining industry wastes, and ways of their solution. Mining of Mineral Deposits, 12(4), 63-72. [CrossRef] [Google Scholar]
  26. SanPiN 4630-88. Sanitarnye pravila i normy okhrany poverkhnostnykh vod ot zagryazneniya. [Google Scholar]
  27. KND Metodyka hravimetrychnoho vyznachennia zavyslykh (suspenzovanykh) rechovyn v pryrodnychykh i stichnykh vodakh. [Google Scholar]
  28. SEV. (1983). Unifitsirovannye metody issledovaniya kachestva vod. Moskva. [Google Scholar]
  29. Dunbabin, J.S., & Bowner, K.H. (1992). Potential use of constructen wetlands for treatment of industrial wasterwaters containing metals. Sci. Total. Environ., 111(2/3), 56-60. [CrossRef] [Google Scholar]
  30. Hosokova, Yasuschi, Miyoshi, Eiich, Fukukawa, Keita. (1991). Kharakteristika protsessa ochistki pribrezhnykh vod trostnikovymi zaroslyami. Rept. Part and Harbour. Res. Inat., 30(11), 206-257. [Google Scholar]
  31. Dyn Janhua. (1992). Issledovanie obraztsovogo proekta sistemy ochistki stochnykh vod na uvlazhnennykh zemlyakh s zaroslyami trostnika. Chemical Journal of Environmental Sciences, 13(2), 8-13. [Google Scholar]
  32. Blankenberg, A.-G.B., & Braskerud, B.C. (2003). “LIERDAMMEN” – a wetland testfield in Norway. Retention of nutrients, pesticides and sediments from a agriculture runoff. In Diffuse Pollut. Conf. Dublin. [Google Scholar]
  33. Lloyd, S.D., Fletcher, T.D., Wong, T.H.F., & Wootton, R.M. (2001). Assessment of Pollutant Removal Performance in a Bio-filtration System. In Preliminary Results, and South Pacific Stormwater Conference (pp. 20-30). New Zealand: Auckland [Google Scholar]
  34. Hadlington, S. (1991). An interestind reed. Chem. Brit., 27(4), 229. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.