Open Access
Issue
E3S Web Conf.
Volume 123, 2019
Ukrainian School of Mining Engineering - 2019
Article Number 01036
Number of page(s) 14
DOI https://doi.org/10.1051/e3sconf/201912301036
Published online 22 October 2019
  1. Sadler, K.W. (1995). An EUB Review of In Situ Oil Sands Bitumen Production. SPE International Heavy Oil Symposium. https://doi.org/10.2118/30240-ms [Google Scholar]
  2. Farouq, Ali S.M. (1974). Heavy Oil Recovery – Principles, Practicality, Potential, and Problems. SPE Rocky Mountain Regional Meeting. https://doi.org/10.2118/4935-ms [Google Scholar]
  3. Masliyah, J.H., & Gray, M.R. (2010). Oil Sands Extraction & Upgrading-Intensive Short Course Notes. Calgary. [Google Scholar]
  4. Takamura, K. (1982). Microscopic structure of athabasca oil sand. The Canadian Journal of Chemical Engineering, 60(4), 538-545. https://doi.org/10.1002/cjce.5450600416 [Google Scholar]
  5. Chilingar, G.V., & Yen, T.F. (1978). Bitumens, Asphalts and Tar Sands. Development in Petroleum Science. https://doi.org/10.1016/s0376-7361(08)x7004-9 [Google Scholar]
  6. Hupka, J., Miller, J.D., & Drelich, J. (2004). Water‐Based Bitumen Recovery from Diluent‐Conditioned Oil Sands. The Canadian Journal of Chemical Engineering, 82(5), 978-985. https://doi.org/10.1002/cjce.5450820513 [Google Scholar]
  7. Masliyah, J., Zhou, Z. J., Xu, Z., Czarnecki, J., & Hamza, H. (2008). Understanding Water-Based Bitumen Extraction from Athabasca Oil Sands. The Canadian Journal of Chemical Engineering, 82(4), 628-654 https://doi.org/10.1002/cjce.5450820403 [Google Scholar]
  8. Cymerman, G.J., Ng, S., Siy, R., & Spence, J. (2006). Energy Conservation Measures at Syncrude Oil Sand Processing Operations. Paper 2191. CIM Mining Conference & Exhibition, Vancouver, BC, Canada. [Google Scholar]
  9. Hupka, J., Miller, J.D., & Cortez, A. (1983). Importance of Bitumen Viscosity in the Hot Water Processing of Domestic Tar Sands. Mining Engineering, 35(12), 1635-1641. [Google Scholar]
  10. Hupka, J., & Miller, J. D. (1993). Tar sand pretreatment with diluent. Mining, Metallurgy & Exploration, 10(3), 139-144. https://doi.org/10.1007/bf03403016 [Google Scholar]
  11. Miller, K.A., Nelson, L.A., & Almond, R.M. (2006). Should You Trust Your Heavy Oil Viscosity Measurement? Journal of Canadian Petroleum Technology, 45(04), 42-48. https://doi.org/10.2118/06-04-02 [Google Scholar]
  12. Dai, Q., & Chung, K.H. (1996). Hot water extraction process mechanism using model oil sands. Fuel, 75(2), 220-226. https://doi.org/10.1016/0016-2361(95)00218-9 [CrossRef] [Google Scholar]
  13. Nguyen, A.V., Evans, G.M., Nalaskowski, J., & Miller, J.D. (2004). Hydrodynamic interaction between an air bubble and a particle: atomic force microscopy measurements. Experimental Thermal and Fluid Science, 28(5), 387-394. https://doi.org/10.1016/j.expthermflusci.2003.01.001 [CrossRef] [Google Scholar]
  14. Miller, J.D., & Misra, M. (1982). Concentration of Utah tar sands by an ambient temperature flotation process. International Journal of Mineral Processing, 9(3), 269-287. https://doi.org/10.1016/0301-7516(82)90033-3 [Google Scholar]
  15. Misra, M., & Miller, J.D. (1991). Comparison of water-based physical separation processes for U.S. tar sands. Fuel Processing Technology, 27(1), 3-20. https://doi.org/10.1016/0378-3820(91)90004-v [CrossRef] [Google Scholar]
  16. Schramm, L.L., Stasiuk, E.N., & Turner, D. (2003). The influence of interfacial tension in the recovery of bitumen by water-based conditioning and flotation of Athabasca oil sands. Fuel Processing Technology, 80(2), 101-118. https://doi.org/10.1016/s0378-3820(02)00224-2 [CrossRef] [Google Scholar]
  17. Lelinski, D., Drelich, J., Miller, J.D., & Hupka, J. (2008). Rate of Bitumen Film Transfer from a Quartz Surface to an Air Bubble as Observed by Optical Microscopy. The Canadian Journal of Chemical Engineering, 82(4), 794-800. https://doi.org/10.1002/cjce.5450820418 [Google Scholar]
  18. Schramm, L.L., Stasiuk, E.N., Yarranton, H., Maini, B.B., & Shelfantook, B. (2003). Temperature Effects From the Conditioning and Flotation of Bitumen From Oil Sands in Terms of Oil Recovery and Physical Properties. Journal of Canadian Petroleum Technology, 42(08), 55-61. https://doi.org/10.2118/03-08-05 [CrossRef] [Google Scholar]
  19. Liu, J., Xu, Z., & Masliyah, J. (2008). Interaction between Bitumen and Fines in Oil Sands Extraction System: Implication to Bitumen Recovery. The Canadian Journal of Chemical Engineering, 82(4), 655-666. https://doi.org/10.1002/cjce.5450820404 [Google Scholar]
  20. Canada’s Oil Sands, Opportunities and Challenges to 2015. An Energy Market Assessment. Canada: National Energy Board. [Google Scholar]
  21. Azin, R., Kharrat, R., Ghotbi, C., & Vossoughi, S. (2005). Applicability of the VAPEX Process to Iranian Heavy Oil Reservoirs. In Proceedings of SPE Middle East Oil and Gas Show and Conference. https://doi.org/10.2523/92720-ms [Google Scholar]
  22. Das, S.K. (1998). Vapex: An Efficient Process for the Recovery of Heavy Oil and Bitumen. SPE Journal, 3(03), 232-237. https://doi.org/10.2118/50941-pa [CrossRef] [Google Scholar]
  23. Yazdani, Ali J., & Maini, B. (2004). Effect of Drainage Height and Grain Size on the Convective Dispersion in the Vapex Process: Experimental Study. Proceedings of SPE/DOE Symposium on Improved Oil Recovery. https://doi.org/10.2523/89409-ms [Google Scholar]
  24. Sulakshin, S.S., & Chubik, P.S. (2011). Razrushenie gornykh porod pri provedenii geologorazvedochnykh rabot. Tomsk: Tomskiy politekhnicheskiy universitet. [Google Scholar]
  25. Maksimov, V.I. (1971) Novye sposoby bureniya skvazhin. Moskva: VIEMS. [Google Scholar]
  26. Arens, V., Babichev, A., Bashkatov, A., Gridin, O., Khrulev, A., & Khcheyan, G. (2007). Borehole Hydro-Mining. Proc. Manual: Mining Book. [Google Scholar]
  27. Rehbinder, G. (1980). A Theory about Cutting Rock with Water Jet. Rock Mechanics, 12(3-4), 247-257. http://dx.doi.org/10.1007/bf01251028 [CrossRef] [Google Scholar]
  28. Helgerud M. B. (2001). Wavespeeds in gas hydrate and sediments containing gashydrate: A laboratory and modeling study. Ph.D. Thesis. Stanford, USA: Stanford Univ. Press. [Google Scholar]
  29. Pedchenko L., Pedchenko L. (2017). Analysis of gas hydrate deposits development by applying elements of hydraulic borehole mining technology. Mining of Mineral Deposits, 11(2), 52-58. https://doi.org/10.15407/mining11.02.052 [CrossRef] [Google Scholar]
  30. Pedchenko, L., & Pedchenko, M. (2012). Substantiation of Method of Formation of Ice Hydrate Blocks with the Purpose of Transporting and Storage of Hydrate Gas. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 28-34. [Google Scholar]
  31. Bondarenko, V., Svietkina, O., & Sai, K. (2017). Study of the formation mechanism of gas hydrates of methane in the presence of surface-active substances. Eastern-European Journal of Enterprise Technologies, 5(6 (89)), 48–55. https://doi.org/10.15587/1729-4061.2017.112313 [CrossRef] [Google Scholar]
  32. Bondarenko, V., Maksymova, E., & Koval, O. (2013). Genetic classification of gas hydrates deposits types by geologic-structural criteria. Annual Scientific-Technical Colletion - Mining of Mineral Deposits, 115-119. https://doi.org/10.1201/b16354-21 [Google Scholar]
  33. Pedchenko, M., & Pedchenko, L. (2018) Prospects the application of hydraulic borehole mining technology for the development of unconventional hydrocarbon deposits. E3S Web of Conference. (60), 00018. https://doi.org/10.1051/e3sconf/20186000018 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.