Open Access
E3S Web Conf.
Volume 124, 2019
International Scientific and Technical Conference Smart Energy Systems 2019 (SES-2019)
Article Number 01006
Number of page(s) 5
Section Energy Systems and Complexes
Published online 25 October 2019
  1. Oxy-combustion turbine power plants (Cheltenham: International Energy Agency) 636 (2015) [Google Scholar]
  2. A. Rogalev, V. Kindra, A. Zonov, N. Rogalev, L. Agamirov Evaluation of bleed flow precooling influence on the efficiency of the E-MATIANT cycle Mechanics, Mechanical Engineering 22 (2), 593–602 (2018) [Google Scholar]
  3. A.N. Rogalev, V.O. Kindra, N.D. Rogalev, V.P. Sokolov, I.A. Milukov, Methods for efficiency improvement of the semi-closed oxy-fuel combustion combined cycle J. Phys. Conf. Ser. 1111 (1) 012003 (2018) [Google Scholar]
  4. H. Jericha, E. Göttlich, W. Sanz, F. Heitmeir Design optimisation of the Graz cycle prototype plant J. Eng. Gas Turbines Power 126 (4), 733–740 (2004) [CrossRef] [Google Scholar]
  5. M. Sammak, K. Jonshagen, M. Thern, Genrup, E. Thorbergsson, T. Grönstedt, A. Dahlquist Conceptual design of a mid-sized semi-closed oxy-fuel combustion combined cycle Proc. of the Turbine Technical Conf., Expo (Vancouver / ASME) (2011) [Google Scholar]
  6. R.J. Allam, M.R. Palmer, G.W. BrownJr., J. Fetvedt, D. Freed, H. Nomoto, M. Itoh, N. Okita, C. JonesJr. High efficiency, low cost of electricity generation from fossil fuels while eliminating atmospheric emissions, including carbon dioxide Energy Proced. 37, 1135–1149 (2013) [Google Scholar]
  7. Y. Iwai, M. Itoh, Y. Morisawa, S. Suzuki, D. Cusano, M. Harris Development approach to the combustor of gas turbine for oxy-fuel, supercritical CO2 cycle Proc. of the Turbine Technical Conf., Expo (Montreal / ASME) (2015) [Google Scholar]
  8. M.E. Deitch, G.A. Filippov Blade row aero-dynamics (Moscow: Energoatomizdat) 240 (1996) [Google Scholar]
  9. A. Zaryankin, A. Rogalev, S. Osipov, V. Kindra Supercritical carbon dioxide gas turbines for high-power generation AIP Conf. Proc. 2047 (1) 020026 (2018) [Google Scholar]
  10. A. Rogalev, E. Grigoriev, V. Kindra, N. Rogalev Thermodynamic optimization and equipment development for a high efficient fossil fuel power plant with zero emissions J. Clean. Prod. 236 117-592 (2019) [Google Scholar]
  11. H.P. Bloch, M. Singh, M.P. Singh, Steam turbines (New York: McGraw-Hill Professional Publishing) 414 (2008) [Google Scholar]
  12. S. Havakechian, R. Greim, Aerodynamic design of 50 per cent reaction steam turbines I. Mech. Eng. C.-J. 213 (1), 1–25 (1999) [Google Scholar]
  13. J.M. Tournier, M.S. El-Genk, Axial flow, multi-stage turbine and compressor models Energ. Convers. Manage. 51 (1), 16–29 (2010) [CrossRef] [Google Scholar]
  14. A.A. Inozemtsev, M.A. Nikhamkin, V.L. Sandratsky Basic design of aero engines and power units (Moscow: Mashinostroenie) 365 (2008) [Google Scholar]
  15. L. Moroz, Y. Govorushchenko, P. Pagur, A uniform approach to conceptual design of axial turbine/compressor flow path The Future of Gas Turbine Technology 3rd International Conf (Brussel) (2006) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.