Open Access
E3S Web Conf.
Volume 124, 2019
International Scientific and Technical Conference Smart Energy Systems 2019 (SES-2019)
Article Number 01049
Number of page(s) 5
Section Energy Systems and Complexes
Published online 25 October 2019
  1. M. Mohammadi, Y. Noorollahi, B. Mohammadi-ivatloo, M. Hosseinzadeh, S.T. Khorasani, Optimal management of energy hubs and smart energy hubs – A review, Renewable and Sustainable Energy Reviews, 89, 33–50 (2018) [CrossRef] [Google Scholar]
  2. Y. Chen, W. Wei, F. Liu, Q. Wu, S. Mei, “Analyzing and validating the economic efficiency of managing a cluster of energy hubs in multi-carrier energy systems, ” Applied Energy, 230, 403–416 (2018) [Google Scholar]
  3. N. Voropai, Ek. Ukolova, D. Gerasimov, K. Suslov, P. Lombardi, P. Komarnicki, The study of multi-energy object simulation methods, Bulletin of the Irkutsk State Technical University. 12 (143), 157–168 (2014) [Google Scholar]
  4. H. Sadeghi, M. Rashidinejad, M. Moeini-Aghtaie, A. Abdollahi, The energy hub: An extensive survey on the state-of-the-art, Applied Thermal Engineering, 161, (2019) [Google Scholar]
  5. C.N. Papadimitriou, A. Anastasiadis, C.S. Psomopoulos, G. Vokas, Demand Response schemes in Energy Hubs: A comparison study, Energy Procedia, 157, 939–944 (2019) [Google Scholar]
  6. M. Geidl, G. Andersson, Optimal power dispatch and conversion in systems with multiple energy carriers, Proc. of the 15th power systems computation conference (PSCC) (2005) [Google Scholar]
  7. M. Geidl, G. Andersson, A modeling and optimization approach for multiple energy carrier power flow, Proc. PowerTech, IEEE Russia 1–7 (2005) [Google Scholar]
  8. M. Geidl, G. Andersson, Operational and topological optimization of multi-carrier energy systems, Proc. Future Power Systems, International Conference on, (2005) [Google Scholar]
  9. F. Kienzle, P. Favre-Perrod, M. Arnold, G. Andersson, Multi-energy delivery infrastructures for the future, Proc.of the infrastructure systems and services: first international conference on building networks for a brighter future (INFRA) (2008) [Google Scholar]
  10. K. Hemmes, J.L. Zachariah-Wolf, M. Geidl, G. Andersson, Towards multi-source multi-product energy systems, International Journal of Hydrogen Energy, 32(10-11), 1332–1338 (2007) [Google Scholar]
  11. L. Carradore, R. Turri, Modeling and simulation of multi-vector energy systems, Proc. of the PowerTech IEEE Bucharest, 1–7 (2009) [Google Scholar]
  12. N.I. Voropai, V.A. Stennikov, Integrated smart energy systems, Izvestiya RAN. Energetika, 1, 64-73, (2014) [Google Scholar]
  13. T. Ma, J. Wu, L. Hao, D. Li, Energy flow matrix modeling and optimal operation analysis of multi energy systems based on graph theory, in book: Operation, Planning, and Analysis of Energy Storage Systems in Smart Energy Hubs, Springer 425–446 (2019) [Google Scholar]
  14. S. Long, A. Parisio, O. Marjanovic, A Conversion Model for Nodes in Multi-Energy Systems, Proc. of IEEE Manchester PowerTech, (2017) [Google Scholar]
  15. S. Pazouki, M.-R. Haghifam, Impact of energy storage technologies on multi carrier energy networks. In: Proceedings of the smart grid conference (SGC) 1–6 (2014) [Google Scholar]
  16. N. Voropai, Ek. Ukolova, P. Lombardi, D. Gerasimov, K. Suslov, P. Komarnicki, “Simulation Approach to Integrated Energy Systems Study Based on Energy Hub Concept, ” In: Proc IEEE PES PowerTech Milano (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.