Open Access
Issue
E3S Web Conf.
Volume 124, 2019
International Scientific and Technical Conference Smart Energy Systems 2019 (SES-2019)
Article Number 03006
Number of page(s) 5
Section Automation, Instruments and Control Methods
DOI https://doi.org/10.1051/e3sconf/201912403006
Published online 25 October 2019
  1. M.V. Talanov, A.V. Karasev, V.M. Talanov, Development of diagnostic system based in digital signal processor STM32F407 Journal of Advanced Research in Dynamical and Control Systems 10 (13), Special Issue 1756–1761 (2018) [Google Scholar]
  2. M.V. Talanov, A.V. Karasev, V.M. Talanov, Development of power converter digital control system using PSIM, Matlab/Simulink and digital signal processor STM32f40 International Journal of Engineering and Technology (UAE) 7 (4.36), 125–127 (2018) [Google Scholar]
  3. M.V. Talanov, A.V. Karasev, V.M. Talanov, Appliacation of the Kalman filter in control systems of power electronics J. Fundam. Appl. Sci. 9 (7S), 917–924 (2017) [Google Scholar]
  4. M.V. Talanov, A.V. Karasev, V.M. Talanov, 11-12 September Implementation of extended Kalman filtering algorithm with improved flux estimator on TMS320F28335 processor for induction sensorless drive Proc. of the 6th European Embedded Design in Education and Research Conference (EDERC) (Milano, Italy) 119–123 (2014) [CrossRef] [Google Scholar]
  5. G. Welch, G. Bishop, July An Introduction to the Kalman Filter (University of North Carolina at Chapel Hill Department of Computer Science) (2006) [Google Scholar]
  6. S. Aksoy, A. Muhurcu, H. Kizmaz, State and Parameter Estimation in Induction Motor Using the Extended Kalman Filtering Algorithm Modern Electric Power Systems Proc. of the International Symposium 5 (2010) [Google Scholar]
  7. T. Du, P. Vas, A.F. Stronach, M.A. Brdys, Application of Kalman Filters and Extended Luenberger Observers in Induction Motor Drives Proc. of the international intel-ligent motion conference 369–386 (1994) [Google Scholar]
  8. P. Vas, Sensorless Vector and Direct Torque Control (New York: Oxford University Press) (1998) [Google Scholar]
  9. O. Burak, L.M. Tolbert, 1-4 June Simulink Implementation of Induction Machine Model – A Modular Approach IEEE International Electric Machines and Drives Conf. (Madison, Wisconsin) 728–734 (2003) [Google Scholar]
  10. P.L. Jansen, R.D. Lorenz, D.W. Novotny, July/August Observer-based direct field orientation: Analysis and comparison of alternative methods IEEE Trans. Ind. Applicat 30, 945–953 (1994) [CrossRef] [Google Scholar]
  11. H. Kubota, K. Matsuse, T. Nakano, March/April DTC-based speed adaptive flux observer of induction motor IEEE Trans. Ind. Applicat. 29, 344–348 (1993) [CrossRef] [Google Scholar]
  12. B.K. Bose, N.R. Patel, February A Programmable Cascaded Low-pass Filter-Based Flux Synthesis for Stator Flux-Oriented Vector-Controlled Induction Motor Drive IEEE Transaction on Industrial Electronics 44 (1), 140–143 (1997) [Google Scholar]
  13. J. Hu, B. Wu, September New Integration Algorithms for Estimating Motor Flux Over a Wide Speed Range IEEE Transaction on Power Electronics 13 (5), 969–977 (1998) [Google Scholar]
  14. M. Labbate, R. Petrella, M. Tursini, Fixed point implementation of Kalman filtering for AC drives: a case study using TMS320F24x DSP. Proc. 3rd Eur. DSP Educ. Res. Conf 1–5 (2000) [Google Scholar]
  15. A.M Trzynadlowski., The Field Oriented Principle in Control of induction Motors (Norwell, MA: Kluwer Academic Publisher) (1994) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.