Open Access
E3S Web Conf.
Volume 124, 2019
International Scientific and Technical Conference Smart Energy Systems 2019 (SES-2019)
Article Number 05014
Number of page(s) 5
Section Additional papers
Published online 10 February 2020
  1. K.Ya. Kondratiev, N.I. Moskalenko, The greenhouse effect of the atmosphere VINITI (Moscow: VINITI), 260 (1984) [Google Scholar]
  2. N.I. Moskalenko, Ya.S. Safiullina, M.S. Sadykova, Zonal modelling of the greenhouse effect of the atmosphere and anthropogenic climate change Alternative energy and ecology 2, 43–54 (2014) [Google Scholar]
  3. N.I. Moskalenko, S.O. Mirumyants, N.F. Loktev, R. Sh. Misbakhov, Equilibrium and non-equilibrium radiation processes: high-temperature environments, radiative heat transfer ed KGEU (Kazan: KGEU), 264 (2014) [Google Scholar]
  4. N.I. Moskalenko, Ya.S. Safiullina, M.S. Khamidullina, N.F. Loktev, Identification of ingredients and determination of the composition of atmospheric emissions and combustion products by fine-structure spectrometry Alternative energy and ecology 2, 43–54 (2010) [Google Scholar]
  5. N.I. Moskalenko, Ya.S. Safiullina, Application of the method of fine-structure spectrometry to determine the ingredient composition of the products of combustion of fuels Izvestia vuzov Energy problems 11–12, 22–32 (2009) [Google Scholar]
  6. N.I. Moskalenko, R.Sh. Misbakhov, I.Z. Bagautdinov, N.F. Loktev, I.R. Dodov, Determination of ingredient composition of atmospheric emissions of the turbojet engine combustion gases by the fine-structure spectroscopy Russian aeronautics 59(3), 419–425 (2016) [Google Scholar]
  7. F.G. Bakirov, V.M. Zakharov, I.Z. Polishchuk, Z.G. Shaikhutdinov, Formation and burnout of soot when burning hydrocarbon fuels (Moscow: Mechanical Engineering), 128 (1989) [Google Scholar]
  8. A.M. Levterov, L.I. Levterova, Analysis of mathematical models of the mechanisms of soot formation during the combustion of hydrocarbon fuels Vista NTU 5, 130–141 (2013) [Google Scholar]
  9. Marig Matti, Coagulation dynamics of fractal-like soot aggregates Journal of Aerosol Science, 38(2), 141–156 (2007) [Google Scholar]
  10. O.V. Vasilyeva, S.I. Ksenofontov, A.G. Krasnova, A.V. Kokshina, The structure and properties of soot in the flame of hydrocarbon fuel Alternative energy and ecology 19, 105–111 (2015) [Google Scholar]
  11. V.E. Alemasov, Thermodynamic and thermophysical properties of combustion products ed VINITI (Moscow: VINITI), 490 (1972) [Google Scholar]
  12. V.E. Alemasov et al, Mathematical modelling of high-temperature processes in power plants ed VINITI (Moscow: VINITI), 254 (1972) [Google Scholar]
  13. N.I. Moskalenko et al, Determination of the composition of the atmospheric emissions of combustion products of a turbojet engine by the method of fine-structure spectrometry Izvestia vuzov Aviation technology 3, 116–121 (2016) [Google Scholar]
  14. N.I. Moskalenko, I.R. Dodov, Fine structured spectroscopy: measuring experimental studies and their applications World chemistry forum 2019 theme: analysis, catalysis, nanoscience (Spain: Barcelona), 52 (2019) [Google Scholar]
  15. L.E. Gordon et al, The HITRAN-2016 Molecular Spectroscopic Database Journal of quantitative spectroscopy and radiative transfer 203, 3–69 (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.