Open Access
E3S Web Conf.
Volume 128, 2019
XII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2019)
Article Number 03003
Number of page(s) 5
Section Heat and Mass Transfer in Nuclear Applications
Published online 08 November 2019
  1. P. Breeze, Power Generation Technologies, 2nd Ed. (Newnes, Oxford, 2014) [Google Scholar]
  2. R. Wiltshire, Advanced District Heating and Cooling(DHC) Systems, 2nd Ed. (Woodhead Publishing, Cambridge, 2016) [Google Scholar]
  3. A.C. Benim, M. Geiger, S. Doehler, M. Schoenenberger, H. Roemer, “Modelling the flow in the exhaust hood of steam turbines under consideration of turbine-exhaust hood interaction”, in:Proceedings 1st European Conference Turbomachinery -3Fluid Dynamic and Thermodynamic Aspects:Computational Methods,Erlangen,Germany, March 1-3,1995,Book Series:VDI Berichte, Vol.1185, pp.343–357 (VDI Verlag, Duesseldorf, 1995) [Google Scholar]
  4. A.C. Benim, B. Epple, B. Krohmer, “Modelling of pulverised coal combustion by a Eulerian-Eulerian two-phase flow formulation”, Progress in Computational Fluid Dynamics -3An International Journal, 5(6), pp.345–361 (2005) [CrossRef] [Google Scholar]
  5. J.P. Kim, U. Schnell, G. Scheffknecht, A.C. Benim, „Numerical modelling of MILD combustion for coal”, Progress in Computational Fluid Dynamics -3An International Journal, 7(6), pp.337–346 (2007) [CrossRef] [Google Scholar]
  6. A.C. Benim, K.J. Syed, Flashback Mechanisms in Lean Premixed Gas Turbine Combustion, (Academic Press, Cambridge,MA,USA, 2014) [Google Scholar]
  7. A.C. Benim, M.P. Escudier, A. Nahavandi, A.K. Nickson, K.J. Syed, F. Joos, “Experimental and numerical investigation of isothermal flow in an idealized swirl combustor”, International Journal of Numerical Methods for Heat & Fluid Flow, 20(3), pp.348–370 (2010) [CrossRef] [Google Scholar]
  8. A.C. Benim, S.Iqbal.W. Meier, F. Joos, A. Wiedermann, “Numerical investigation of turbulent swirling flames with validation in a gas turbine model combustor”, Applied Thermal Engineering, 110, pp.202–212 (2017) [Google Scholar]
  9. R. Ehrlich, Renewable Energy (CRC Press, Boca Raton, 2013) [Google Scholar]
  10. E. DuBois, A. Mercier(Ed.), Energy Recovery (Nova Science Publishers, NY, 2009) [Google Scholar]
  11. D.G. Ebling, A. Krumm, B. Pfeiffelmann, J. Gottschald, J. Bruchmann, A.C. Benim, M. Adam, R. Labs, R.R. Herbertz, A. Stunz, “Development of a system for thermoelectric heat recovery from stationary industrial processes”, Journal of Electronic Materials, 45(7), pp.3433–3439 (2016) [CrossRef] [Google Scholar]
  12. S. Fan, Y. Gao, “Numerical analysis on the segmented annular thermoelectric generator for waste heat recovery”, Energy, 183, pp.35–47 (2019) [CrossRef] [Google Scholar]
  13. M. Kaltschmitt(Ed.), Energy From Organic Materials(Biomass) (Springer, New York,NY,USA, 2019) [CrossRef] [Google Scholar]
  14. A. Eric, S. Nemoda, M. Komatina, D. Dakic, B. Repic, “Experimental investigation on the kinetics of biomass combustion in vertical tube reactor”, Journal of the Energy Institute,92 (4), pp.1077–1090 (2019) [Google Scholar]
  15. B.G. Mustafa, M.H.M. Kiah, A. Irshad, G.E. Andrews, H.N. Phylaktou, H. Li, B.M. Gibbs, “Rich biomass combustion:gaseous and particle number emissions”, Fuel, 248, pp.221–231 (2019) [CrossRef] [Google Scholar]
  16. C. Chen, Z. Luo, C. Yu, “Release and transformation mechanisms of trace elements during biomass combustion”, Journal of Hazardous Materials, 380,Article 120857 (2019) [Google Scholar]
  17. T. Chen, X. Ku, J. Lin, H. Jin, “Modelling the combustion of thermally thick biomass particles”, Powder Technology, 353, pp.110–124 (2019) [Google Scholar]
  18. M. Pehnt, M. Cames, C. Fischer, B. Praetorius, L. Schneider, K. Schumacher, J.-P Voß Micro Cogeneration (Springer, Berlin,Germany, 2006) [Google Scholar]
  19. J. Kalina, M. Swierzewski, R. Strzalka, „Operational experiences of municipal heating plants with biomass-fired ORC cogeneration units“, Energy Conversion and Management, 181, pp.544–561 (2019) [CrossRef] [Google Scholar]
  20. R. Strzalka, T.G. Erhart, U. Eicker, „Analysis and optimization of a cogeneration systedm based on biomass combustion, Applied Thermal Engineering, 50(2), pp.1418–1426 (2013) [CrossRef] [Google Scholar]
  21. J. Kalina, N. Swierzewski, „Identification of ORC unit operation in biomass-fired cogeneration system“, Renewable Energy, 122, pp.400–414 (2019) [CrossRef] [Google Scholar]
  22. N. Mahdavi, S. Khalilarya, „Comprehensive thermodynamic investigation of three cogeneration systems including GT-HRSG/RORC as the base system,intermediate system and solar hybridized system“, Energy, 181, pp.1252–1272 (2019) [CrossRef] [Google Scholar]
  23. ANSYS® FLUENT, [Google Scholar]
  24. J.P. van Doormaal, G.D. Raithby, “Enhancements of the simple method for predicting incompressible fluid flows”, Numerical Heat Transfer, 7, pp.147–163 (1984) [CrossRef] [Google Scholar]
  25. T.J. Barth, D.C. Jespersen, “The design and application of upwind schemes on unstructured meshes”,AIAA-89-0366 (1989) [Google Scholar]
  26. PA. Durbin, B.A. Pettersson Reif, Statistical Theory and Modeling for Turbulent Flows (Wiley, Chichester,UK, 2003) [Google Scholar]
  27. F.R. Menter, “Two-equation eddy viscosity turbulence models for engineering applications”, AIAA Journal, 32, pp.1598–1605 (1994) [NASA ADS] [CrossRef] [Google Scholar]
  28. F. Menter, J.C. Ferreira, T. Esch, B. Konno, “The SST turbulence model with improved wall treatment for heat transfer predictions in gas turbines”, Proc.International Gas Turbine Congress, IGTC2003-TS-3059,Tokyo,2-7 November (2003) [Google Scholar]
  29. Z. Tao, Z. Cheng, J. Zhu, L. Haiwang, “Effect of turbulence models on predicting convective heat transfer to hydrocarbon fuel at supercritical pressure”, Chinese Journal of Aeronautics, 29(5), pp.1247–1261 (2016) [CrossRef] [Google Scholar]
  30. M.A.R. Sharif, K.K. Mothe, “Evaluation of turbulence models in the prediction of heat transfer due to slot jet impingement on plane and concave surfaces”, Numerical Heat Transfer,Part B:Fundamentals, 55(4), pp.273–294 (2009) [CrossRef] [Google Scholar]
  31. F.A.Z.M. Saad, A.J. Jaworski, “Numerical predictions of early stage turbulence in oscillatory flow acoss parallel-plate heat exchangers of a thermoacoustic system”, Applied Sciences, 7, 673 (2017) [CrossRef] [Google Scholar]
  32. S.R. Turns, An Introduction to Combustion,3rd ed., (McGrawHill, New York,USA, 2012) [Google Scholar]
  33. TJ. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu, 1995. “A new k-ɛ model for high Reynolds number turbulent flows-Model development and validation”, Computers and Fluids, 24(3), pp–227–238 (1995) [CrossRef] [Google Scholar]
  34. M.N Üzisik, Radiative Transfer and Interactions with Conduction and Convection (Wiley, NY, 1973) [Google Scholar]
  35. E.H. Chui, G.D. Raithby. “Computation of Radiant Heat Transfer on a Non-Orthogonal Mesh Using the Finite-Volume Method”, Numerical Heat Transfer,Part B, 23, pp.269–288. (1993) [CrossRef] [Google Scholar]
  36. R. Siegel, J.R. Howell, Thermal Radiation Heat Transfer (Hemisphere, Washington DC, 1992) [Google Scholar]
  37. A.C. Benim, “A finite element solution of radiative heat transfer in participating media utilizing the moment method”, Computer Methods in Applied Mechanics and Engineering, 67(1), pp.1–14 (1988) [CrossRef] [Google Scholar]
  38. P.B. Taylor, PJ. Foster, “The total emissivities of limunous and non-limunous flames”, International Journal of Heat and Mass Transfer, 17(12), pp.1591–1605 (1974) [CrossRef] [Google Scholar]
  39. Verein Deutscher Ingenieure, „VDI-Warmeatlas“, Springer, 10.1007/978-3-642-19981-3 (2013). [Google Scholar]
  40. B.F. Magnussen, G.H. Hjertager, „On mathematical modelling of turbulent combustion with special emphasis on soot formation and combustion“, Proceedings of the 16th Symposium(International) on Combustion, pp.719–729, The Combustion Institute, Pittsburgh,USA. [Google Scholar]
  41. C.K. Westbrook, F.L. Dryer, “Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames”, Combustion Science and Technology, 27, pp.31–43 (1981) [CrossRef] [Google Scholar]
  42. A. Brink, „Eddy Break-Up Based Models for Industrial Diffusion Flames with Complex Gas Phase Chemistry,Ph.D Thesis, ABO Akademi University, Finland [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.