Open Access
E3S Web Conf.
Volume 128, 2019
XII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2019)
Article Number 06001
Number of page(s) 7
Section Multi-Phase Flows
Published online 08 November 2019
  1. A.A. Nicol & M. Gacesa, Condensation of steam on a rotating vertical cylinder, Journal of Heat Transfer, 92(1), 144–151. (1970) [Google Scholar]
  2. J.C. Dent, Effect of vibration on condensation heat transfer to a horizontal tube, Proceedings of the Institution of Mechanical Engineers, 184(1), 99–106,. (1969) [CrossRef] [Google Scholar]
  3. M.A. Akhavan-Behabadi, R. Kumar, A. Mohammadpour, & M. Jamali-Asthiani Effect of twisted tape insert on heat transfer and pressure drop in horizontal evaporators for the flow of R- 134a. International Journal of Refrigeration, 32(5), 922–930, (2009). [CrossRef] [Google Scholar]
  4. S. Laohalertdecha, & S. Wongwises, The effects of corrugation pitch on the condensation heat transfer coefficient and pressure drop of R-134a inside horizontal corrugated tube, International Journal of Heat and Mass Transfer, 53(13–14), 2924–2931, (2010) [CrossRef] [Google Scholar]
  5. J. Zhu, Y Luo, J. Tian, J. Li, & X. Gao, Clustered ribbed-nanoneedle structured copper surfaces with high-efficiency dropwise condensation heat transfer performanceACS applied materials & interfaces, 7(20), 10660–10665, (2015) [CrossRef] [Google Scholar]
  6. A. Briggs, Enhanced condensation of R-113 and steam using three-dimensional pin-fin tubes, Experimental heat transfer, 16(1), 61–79, (2003) [CrossRef] [Google Scholar]
  7. M. Izumi, S. Kumagai, R. Shimada, & N. Yamakawa, Heat transfer enhancement of dropwise condensation on a vertical surface with round shaped grooves. Experimental Thermal and Fluid Science, 28(2-3), 243–248, (2004). [CrossRef] [Google Scholar]
  8. R. Kumar, H.K. Varma, B. Mohanty, & K.N. Agrawal, Augmentation of heat transfer during filmwise condensation of steam and R-134a over single horizontal finned tubes, International journal of heat and mass transfer, 45(1), 201–211. (2002) [CrossRef] [Google Scholar]
  9. Solid Works premium, Dassault systems, USA, (2014) [Google Scholar]
  10. E.N. Sieder, G.E. Tate, Heat transfer and pressure drop of liquids in tubes, Ind. Eng. Chem. 28, 1429–1435, (1936) [CrossRef] [Google Scholar]
  11. M. Alwazzan, K. Egab, B. Peng, J. Khan, & C. Li, Condensation on hybrid-patterned copper tubes (I): Characterization of condensation heat transfer, International Journal of Heat and Mass Transfer, 112, 991–1004, (2017). [CrossRef] [Google Scholar]
  12. J. Fernández-Seara, FJ. Uhia, & J. Sieres, Laboratory practices with the Wilson plot method. Experimental heat transfer, 20(2), 123–135. (2007) [CrossRef] [Google Scholar]
  13. J. Fernández-Seara, FJ. Uhía, J. Sieres, & A. Campo, Experimental apparatus for measuring heat transfer coefficients by the Wilson plot method. European Journal of Physics, 26(3), N1, (2005) [CrossRef] [Google Scholar]
  14. S. J. Kline, Describing uncertainty in single sample experiments. Mech. Engineering, 75, 3–8. (1953) [Google Scholar]
  15. H.W. Coleman, & W. G. Steele, Experimentation, validation, and uncertainty analysis for engineers. John Wiley & Sons, (2018) [CrossRef] [Google Scholar]
  16. M.R. Rajkumar, A. Praveen, R.A. Krishnan, L.G. Asirvatham, & S. Wongwises, Experimental study of condensation heat transfer on hydrophobic vertical tube. International Journal of Heat and Mass Transfer, 120, 305–315, (2018) [CrossRef] [Google Scholar]
  17. H.M. Ali, & A. Briggs, An investigation of condensate retention on pin-fin tubes, Applied Thermal Engineering, 63(2), 503–510, (2014) [CrossRef] [Google Scholar]
  18. Y Mori, K. Hijikata, S. Hirasawa, & W. Nakayama, Optimized Performance of Condensers with Outside Condensing Surfaces,Journal of Heat Transfer, 103(1), 96, (1981) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.